INTEREST RATES THAT VARY WITH TIME

- Find P given F and interest rates that vary over N

INTEREST RATES THAT VARY WITH TIME

- Find P given F and interest rates that vary over N
- Find the present equivalent value given a future value and a varying interest rate over the period of the loan

INTEREST RATES THAT VARY WITH TIME

- Find P given F and interest rates that vary over N
- Find the present equivalent value given a future value and a varying interest rate over the period of the loan

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{N}} \\
& P=-------------- \\
& \Pi_{k+1}^{N}\left(1+i_{k}\right)
\end{aligned}
$$

NOMINAL AND EFFECTIVE INTEREST RATES

- Nominal Interest Rate - r - For rates compounded more frequently than one year, the stated annual interest rate.
- Effective Interest Rate - i - For rates compounded more frequently than one year, the actual amount of interest paid.
- $i=(1+r / M))^{M}-1=(F / P, r / M, M)-1$
- M - the number of compounding periods per year
- Annual Percentage Rate - APR - percentage rate per period times number of periods.
- APR = $\mathrm{r} \times \mathrm{M}$

COMPOUNDING MORE OFTEN THAN ONCE A

 YEAR Single Amounts- Given nominal interest rate and total number of compounding periods, P, F or A can be determined by

$$
\begin{aligned}
& F=P(F / P, i \%, N) \\
& i \%=(1+r / M)^{M}-1
\end{aligned}
$$

Uniform and/or Gradient Series

- Given nominal interest rate, total number of compounding periods, and existence of a cash flow at the end of each period, P, F or A may be determined by the formulas and tables for uniform annual series and uniform gradient series.

CASH FLOWS LESS OFTEN THAN COMPOUNDING PERIODS

- Find A, given i, k and X, where:
$-i$ is the effective interest rate per interest period
$-k$ is the period at the end of which cash flow occurs
$-X$ is the uniform cash flow amount
Use: A = X (A / F,i\%, k)
- Find A, given i, k and X , where:
$-i$ is the effective interest rate per interest period
- k is the period at the beginning of which cash flow occurs
$-X$ is the uniform cash flow amount
Use: $A=X(A / P, i \%, k)$

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS

- Continuous compounding assumes cash flows occur at discrete intervals, but compounding is continuous throughout the interval.

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS

- Continuous compounding assumes cash flows occur at discrete intervals, but compounding is continuous throughout the interval.
- Given nominal per year interest rate -- r, compounding per year -- M one unit of principal $=[1+(r / M)]^{M}$

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS

- Continuous compounding assumes cash flows occur at discrete intervals, but compounding is continuous throughout the interval.
- Given nominal per year interest rate --r, compounding per year -- M one unit of principal $=[1+(r / M)]^{M}$
- Given $\mathrm{M} / \mathrm{r}=\mathrm{p}, \quad[1+(r / \mathrm{M})]^{M}=[1+(1 / p)]^{r p}$

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS

- Continuous compounding assumes cash flows occur at discrete intervals, but compounding is continuous throughout the interval.
- Given nominal per year interest rate --r, compounding per year -- M one unit of principal $=[1+(r / M)]^{\mathrm{M}}$
- Given $\mathrm{M} / r=p, \quad[1+(r / M)]^{M}=[1+(1 / p)]^{r p}$
- Given $\lim _{p \rightarrow \infty}[1+(1 / p)]^{p}=e^{1}=2.71828$

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS

- Continuous compounding assumes cash flows occur at discrete intervals, but compounding is continuous throughout the interval.
- Given nominal per year interest rate --r, compounding per year -- M one unit of principal $=[1+(r / M)]^{M}$
- Given $\mathrm{M} / r=p, \quad[1+(r / M)]^{M}=[1+(1 / p)]^{r p}$
- Given $\lim _{p \rightarrow \infty}[1+(1 / p)]^{p}=e^{1}=2.71828$
- $(F / P, r \%, \stackrel{p \rightarrow-}{N})=e^{r N}$

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS

- Continuous compounding assumes cash flows occur at discrete intervals, but compounding is continuous throughout the interval.
- Given nominal per year interest rate -- r, compounding per year -- M one unit of principal $=[1+(r / M)]^{M}$
- Given $\mathrm{M} / \mathrm{r}=\mathrm{p}, \quad[1+(\mathrm{r} / \mathrm{M})]^{\mathrm{M}}=[1+(1 / p)]^{r p}$
- Given $\lim _{p \rightarrow \infty}[1+(1 / p)]^{p}=e^{1}=2.71828$
- $(F / P, r \%, \stackrel{p}{\circ} \%, \stackrel{N}{N})=e^{r N}$
- $\mathrm{i}=e^{r}-1$

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS Single Cash Flow

- Finding F given P
- Finding future equivalent value given present value
- $F=P\left(e^{r N}\right)$
- Functionally expressed as (F / P, r\%, N)
- $e^{r N}$ is continuous compounding compound amount
- Predetermined values are in column 2 of appendix D of text

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS Single Cash Flow

- Finding P given F
- Finding present equivalent value given future value
- $P=F\left(e^{-r N}\right)$
- Functionally expressed as (P / F, r \% \%, N)
- $e^{-r N}$ is continuous compounding present equivalent
- Predetermined values are in column 3 of appendix D of text

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS Uniform Series

- Finding F given A
- Finding future equivalent value given a series of uniform equal receipts
- $F=A\left(e^{r N_{-}} 1\right) /\left(e^{r-1}\right)$
- Functionally expressed as (F / A, r\% \%, N)
- $\left(e^{r^{N}}-1\right) /\left(e^{r_{-}} 1\right)$ is continuous compounding compound amount
- Predetermined values are in column 4 of appendix D of text

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS Uniform Series

- Finding P given A
- Finding present equivalent value given a series of uniform equal receipts
- $P=A\left(e^{r N-1}\right) /\left(e^{r N}\right)\left(e^{r}-1\right)$
- Functionally expressed as (P/A, $\mathrm{r} \%, \mathrm{~N}$)
- $\left(e^{r N_{-}} 1\right) /\left(e^{r N}\right)\left(e^{r-1}\right)$ is continuous compounding present equivalent
- Predetermined values are in column 5 of appendix D of text

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS Uniform Series

- Finding A given F
- Finding a uniform series given a future value
- $A=F\left(e^{r-1}\right) /\left(e^{r N}-1\right)$
- Functionally expressed as (A/F, ro, N)
- $\left(e^{r-1}\right) /\left(e^{r N}-1\right)$ is continuous compounding sinking fund
- Predetermined values are in column 6 of appendix D of text

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS Uniform Series

- Finding A given P
- Finding a series of uniform equal receipts given present equivalent value
- $A=P\left[e^{r N}\left(e^{r-1}\right) /\left(e^{r N}-1\right)\right]$
- Functionally expressed as (A/P, r\%, N)
- $\left[e^{r N}\left(e^{r-1} 1\right) /\left(e^{r N}-1\right)\right]$ is continuous compounding capital recovery
- Predetermined values are in column 7 of appendix D of text

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Continuous flow of funds suggests a series of cash flows occurring at infinitesimally short intervals off time

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Continuous flow of funds suggests a series of cash flows occurring at infinitesimally short intervals of time
- Given:
- a nominal interest rate or r
- p is payments per year

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Continuous flow of funds suggests a series of cash flows occurring at infinitesimally short intervals of time
- Given:
- a nominal interest rate or r
- p is payments per year

$$
P=\begin{gathered}
{[1+(r / p)]^{p}=1} \\
r[1+(r / p)]^{p}
\end{gathered}
$$

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Continuous flow of funds suggests a series of cash flows occurring at infinitesimally short intervals of time
- Given:
- a nominal interest rate or \underline{r}
- p is payments per year

$$
P=\begin{gathered}
{[1+(r / p)]^{p}=1} \\
r[1+(r / p)]^{p}
\end{gathered}
$$

- Given $\operatorname{Lim}_{p \rightarrow 00}[1+(r / p)]^{p}=e^{r}$

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Continuous flow of funds suggests a series of cash flows occurring at infinitesimally short intervals of time
- Given:
- a nominal interest rate or \underline{r}
- p is payments per year

$$
P=\begin{gathered}
{[1+(r / p)]^{p}=1} \\
r[1+(r / p)]^{p}
\end{gathered}
$$

- Given $\operatorname{Lim}[1+(r / p)]^{p}=e^{r}$
- For one year $(P / A, r \%, 1)=\left(e^{r}=1\right) / r e^{r}$

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding F given $\overline{\mathrm{A}}$

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding F given $\overline{\mathrm{A}}$
- Finding the future equivalent given the continuous funds flow

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding F given $\overline{\mathrm{A}}$
- Finding the future equivalent given the continuous funds flow
- $F=\bar{A}\left[\left(e^{N}-1\right) / r\right]$

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding F given $\overline{\mathrm{A}}$
- Finding the future equivalent given the continuous funds flow
- $F=\bar{A}\left[\left(e^{N}-1\right) / r\right]$
- Functionally expressed as ($\mathrm{F} / \overline{\mathrm{A}}, \mathrm{r} \%, \mathrm{~N}$)

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding F given \bar{A}
- Finding the future equivalent given the continuous funds flow
- $F=\bar{A}\left[\left(e^{N}-1\right) / r\right]$
- Functionally expressed as ($\mathrm{F} / \overline{\mathrm{A}}, \mathrm{r} \%, \mathrm{~N}$)
- ($e^{N}-1$)/r is continuous compounding compound amount

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding F given \bar{A}
- Finding the future equivalent given the continuous funds flow
- $F=\bar{A}\left[\left(e^{N}-1\right) / r\right]$
- Functionally expressed as ($\mathrm{F} / \overline{\mathrm{A}}, \mathrm{r} \%, \mathrm{~N}$)
- ($e^{N}-1$)/r is continuous compounding compound amount
- Predetermined values are found in column 6 of appendix D of text.

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding P given $\overline{\mathrm{A}}$

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding P given \bar{A}
- Finding the present equivalent given the continuous funds flow

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding P given $\overline{\mathrm{A}}$
- Finding the present equivalent given the continuous funds flow
- $P=\bar{A}\left[\left(e^{N}-1\right) / r e^{N}\right]$

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding P given $\overline{\mathrm{A}}$
- Finding the present equivalent given the continuous funds flow
- $P=A\left[\left(e^{N}-1\right) / r e^{N}\right]$
- Functionally expressed as (P / Ā, $\%$ \%, N)

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding P given $\overline{\mathrm{A}}$
- Finding the present equivalent given the continuous funds flow
- $P=\bar{A}\left[\left(e^{N}-1\right) / r e^{N}\right]$
- Functionally expressed as ($\mathrm{P} / \overline{\mathrm{A}}, \mathrm{r} \%, \mathrm{~N}$)
- $\left(e^{N}-1\right) / r e^{N}$ is continuous compounding present equivalent

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding P given $\overline{\mathrm{A}}$
- Finding the present equivalent given the continuous funds flow
- $P=\bar{A}\left[\left(e^{N}-1\right) / r e^{N}\right]$
- Functionally expressed as ($\mathrm{P} / \overline{\mathrm{A}}, \mathrm{r} \%, \mathrm{~N}$)
- $\left(e^{N}-1\right) / r e^{N}$ is continuous compounding present equivalent
- Predetermined values are found in column 7 of appendix D of text.

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given F

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given F
- Finding the continuous funds flow given the future equivalent

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given F
- Finding the continuous funds flow given the future equivalent
- $A=F\left[r /\left(e^{N}-1\right)\right]$

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given F
- Finding the continuous funds flow given the future equivalent
- $A=F\left[r /\left(e^{N}-1\right)\right]$
- Functionally expressed as ($\overline{\mathrm{A}} / \mathrm{F}, \mathrm{r} \%, \mathrm{~N}$)

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given F
- Finding the continuous funds flow given the future equivalent
- $A=F\left[r /\left(e^{N}-1\right)\right]$
- Functionally expressed as ($\overline{\mathrm{A}} / \mathrm{F}, \mathrm{r} \%, \mathrm{~N}$)
- $r /\left(e^{\mathrm{N}}-1\right)$ is continuous compounding sinking fund

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given P

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given P
- Finding the continuous funds flow given the present equivalent

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given P
- Finding the continuous funds flow given the present equivalent
- $A=P\left[r /\left(e^{N}-1\right)\right]$

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given P
- Finding the continuous funds flow given the present equivalent
- $A=P\left[r /\left(e^{N}-1\right)\right]$
- Functionally expressed as ($\overline{\mathrm{A}} / \mathrm{P}, \mathrm{r} \%, \mathrm{~N}$)

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given P
- Finding the continuous funds flow given the present equivalent
- $A=F\left[r e^{N} /\left(e^{N}-1\right)\right]$
- Functionally expressed as ($\overline{\mathrm{A}} / \mathrm{P}, \mathrm{r} \%, \mathrm{~N}$)
- $r e^{N} /\left(e^{N}-1\right)$ is continuous compounding capital recovery

