PAYBACK PERIOD METHOD

- Sometimes referred to as simple payout method

PAYBACK PERIOD METHOD

- Sometimes referred to as simple payout method
- Indicates liquidity (riskiness) rather than profitability

PAYBACK PERIOD METHOD

- Sometimes referred to as simple payout method
- Indicates liquidity (riskiness) rather than profitability
- Calculates smallest number of years (Θ) needed for cash inflows to equal cash outflows -- break-even life

PAYBACK PERIOD METHOD

- Sometimes referred to as simple payout method
- Indicates liquidity (riskiness) rather than profitability
- Calculates smallest number of years (Θ) needed for cash inflows to equal cash outflows -- break-even life
- © ignores the time value of money and all cash flows which occur after Θ

PAYBACK PERIOD METHOD

- Sometimes referred to as simple payout method
- Indicates liquidity (riskiness) rather than profitability
- Calculates smallest number of years (Θ) needed for cash inflows to equal cash outilows -- break-even life
- © ignores the time value of money and all cash flows which occur after Θ

$$
\sum_{k=1}^{\Theta}\left(R_{k}-E_{k}\right)-I \geq 0
$$

PAYBACK PERIOD METHOD

- Sometimes referred to as simple payout method
- Indicates liquidity (riskiness) rather than profitability
- Calculates smallest number of years (©) needed for cash inflows to equal cash outflows -- break-even life
- © ignores the time value of money and all cash flows which occur after Θ

$$
\sum_{k=1}^{\Theta}\left(R_{k}-E_{k}\right)-1 \geq 0
$$

- If Θ is calculated to include some fraction of a year, it is rounded to the next highest year

PAYBACK PERIOD METHOD

- The payback period can produce misleading results, and should only be used with one of the other methods of determining profitability

PAYBACK PERIOD METHOD

- The payback period can produce misleading results, and should only be used with one of the other methods of determining profitability
- A discounted payback period Θ^{\prime} (where $\Theta^{\prime} \leq \mathrm{N}$) may be calculated so that the time value of money is considered

PAYBACK PERIOD METHOD

- The payback period can produce misleading results, and should only be used with one of the other methods of determining profitability
- A discounted payback period Θ^{\prime} (where $\Theta^{\prime} \leq \mathrm{N}$) may be calculated so that the time value of money is considered

$$
\sum_{k=1}^{\Theta}\left(R_{k}-E_{k}\right)(P / F, i \%, k)-I \geq 0
$$

PAYBACK PERIOD METHOD

- The payback period can produce misleading results, and should only be used with one of the other methods of determining profitability
- A discounted payback period Θ^{\prime} (where $\Theta^{\prime} \leq \mathrm{N}$) may be calculated so that the time value of money is considered

$$
\sum_{k=1}^{\Theta}\left(R_{k}-E_{k}\right)(P / F, i \%, k)-I \geq 0
$$

i^{\prime} is the MARR

PAYBACK PERIOD METHOD

- The payback period can produce misleading results, and should only be used with one of the other methods of determining profitability
- A discounted payback period Θ^{\prime} (where $\Theta^{\prime} \leq \mathrm{N}$) may be calculated so that the time value of money is considered

$$
\sum_{k=1}^{\Theta}\left(R_{k}-E_{k}\right)(P / F, i \%, k)-I \geq 0
$$

i^{\prime} is the MARR
I is the capital investment made at the present time

PAYBACK PERIOD METHOD

- The payback period can produce misleading results, and should only be used with one of the other methods of determining profitability
- A discounted payback period Θ^{\prime} (where $\Theta^{\prime} \leq \mathrm{N}$) may be calculated so that the time value of money is considered

$$
\sum_{k=1}^{\Theta}\left(R_{k}-E_{k}\right)(P / F, i \%, k)-I \geq 0
$$

i^{\prime} is the MARR
I is the capital investment made at the present time ($k=0$) is the present time

PAYBACK PERIOD METHOD

- The payback period can produce misleading results, and should only be used with one of the other methods of determining profitability
- A discounted payback period Θ^{\prime} (where $\Theta^{\prime} \leq \mathrm{N}$) may be calculated so that the time value of money is considered

$$
\sum_{k=1}^{\Theta^{\prime}}\left(R_{k}-E_{k}\right)(P / F, i \%, k)-I \geq 0
$$

i^{\prime} is the MARR
I is the capital investment made at the present time
($\mathrm{k}=0$) is the present time
Θ ' is the smallest value that satisfies the equation

INVESTMENT-BALANCE DIAGRAM

Describes how much money is

 tied up in a project and how the recovery of funds behaves over its estimated life.
INTERPRETING IRR USING

 INVESTMENTT-BALANCE DIAGRAM Unrecovered $_{1+\mathrm{i} \prime q}\left[\mathrm{P}\left(1+\mathrm{i}^{\prime}\right)-\left(\mathrm{R}_{1}-\mathrm{E}_{1}\right)\right]\left(1+\mathrm{i}^{\prime}\right)$ Investment Balance, \$

- downward arrows represent annual returns $\left(R_{k}-E_{k}\right): 1 \leq k \leq N$
- dashed lines represent opportunity cost of interest, or interest on BOY investment balance
- IRR is value i ' that causes unrecovered investment balance to equal 0 at the end of the investment period.

INVESTMENT-BALANCE DIAGRAM EXAMPLE

- Capital Investment (I) = \$10,000
- Uniform annual revenue $=\$ 5,310$
- Annual expenses = \$3,000
- Salvage value = \$2,000
- MARR = 5\% per year

> MARR $=5 \%$
> \$2,001 (= FW)
> $\Theta^{\prime}{ }^{\prime}+\$ 4,310$
> - 5,000
> - 10,000

WHAT INVESTMENT-BALANCE DIAGRAM PROVIDES

- Discounted payback period (Θ^{\prime}) is 5 years
- FW is $\$ 2,001$
- Investment has negative investment balance until the fifth year
Investment-balance diagram provides additional insight into worthiness of proposed capital investment opportunity and helps communicate important economic information

