
Week 1

Introduction,
Course Outl ine,

and Math
Revision

Kurtuluş KÜLLÜ

ANKARA UNIVERSITY

COM364

AUTOMATA THEORY

Theory of Computation

Students often find theoretical topics boring and dif ficult to
understand BUT,

- there are some fascinating big ideas and

- theory is relevant to practice.

For example,

- Grammars programming language and compiler design,
natural language processing

- Finite automata and regular expressions string searching,
pattern matching, digital logic (circuit) design

- Undecidability, complexity, and intractability what can we
compute and how fast?

We will try to make it understandable and interesting

COM364 Week1 2

AUTOMATA THEORY

These are central topics in theory of computation

What are computers capable of?

What are their limits?

Mathematicians started working on these questions in the 1930s
(before an ordinary “computer” of today existed)

Since then, technology improved a lot and these questions are now
not only about theory but also has practical effects.

Each of Automata, Computability, and Complexity deals with
slightly different questions. Let’s look at them in reverse order (to
emphasize the reason for the given order)

COM364 Week1 3

AUTOMATA, COMPUTABILITY,

AND COMPLEXITY

There are many dif ferent problems,

 some are easy: e.g., sorting a list

 some are hard: e.g., scheduling classes for the entire university
satisfying certain constraints (no two classes can be in the same
room at the same time, a person cannot be in two places at the same
time, etc.)

What makes some problems

computationally hard and others easy?

 The interesting thing is that we still don’t know the exact
answer. But we have a very useful classification.

 For example, this has important effects in cryptography.

 We will explore this topic towards the end of the course.

COM364 Week1 4

COMPLEXITY THEORY

What are the limits of computers?

I.e., what can they solve and cannot solve?

 Between 1930s and 1960s, mathematicians such as Gödel,

Turing, and Church discovered that some problems cannot be

solved by computers.

 Theoretical computer models were developed in this field

which eventually lead to actual computers.

COM364 Week1 5

COMPUTABILITY THEORY

 This is about the mathematical computation models and their

properties

 These models have direct applications in practice

 For example,

 finite automata are (automata is plural, singular version is

automaton) used in text processing, compilers, and hardware design;

 context-free grammars are used in programming languages and

artificial intelligence.

 We will start with this topic because the other two will use the

computer models we will see here.

COM364 Week1 6

AUTOMATA THEORY

We will mostly use
the board instead of
slides

 I will try to produce
some summary notes
each week but the
main resources to
study are the
suggested books.

There are many
examples in these
books that will be
very helpful for exams

COM364 Week1 7

ABOUT THE COURSE

 There will be
 two mid-term exams and

 a final exam

 Each mid-term will
count for 25% and

 the final will be 50% of
your course grade

 Exam dates are
determined by the
department, so they
can be different from
the weeks in the
syllabus

COM364 Week1 8

EXAMS AND GRADING

Mid-term1

Mid-term2

Final

Fol low the
course web
page on the
depar tment
web s i te for
announcements
and documents

(Check i t at
least twice a
week ,
espec ial ly once
before a c lass
hour)

COM364 Week1 9

COURSE

WEB PAGE

 Finite Automata (FA)
 Deterministic and Nondeterministic FA

 Regular Expressions (REs) and Languages (RLs)
 Including relations between these and FAs

 Including: Pumping Lemma (PL) for RLs; Examples of non-regular
languages; Proving that a language is not regular using PL

 Context-Free Grammars (CFGs) and Languages (CFLs)

 Pushdown Automata (PDA)
 And their relation to CFLs, Pumping Lemma for CFLs

 Turing Machines

 Decidability

 Reductions

 Complexity (Time and Space)

 Intractability (P and NP classes, NP -completeness)

 Advanced Topics (if there is time)

COM364 Week1 10

OUTLINE OF TOPICS

 This course wil l be very mathematical and we wil l work with proofs

 A good proof should be correct and clear (easy to understand)

 When writ ing (or describing) a proof, i t is helpful to give three levels of
detai l
 1st level: A short phrase/sentence providing a “hint” of the proof

 E.g. “proof by contradiction”, “proof by induction”, “follows from the pigeonhole
principle”

 2nd level: A short, one paragraph description of the main ideas

 3rd level: The full proof

 The book by Sipser is written in this way and I suggest you do the same
when needed

 In the classroom, we wil l generally talk about the proofs using the first
two levels (the detai ls wil l mostly be excluded)
 When studying, you should think (and look at the books) about how to complete

these details because you might be asked to give complete proofs in exams.

 We wil l go over some standard proof methods (Both textbooks have
par ts on these)

COM364 Week1 11

WARNINGS

 Sets

 Sequences and Tuples

 Relations and Functions

 Graphs

 Alphabets, Strings, and Languages

COM364 Week1 12

REVISION OF RELATED

MATHEMATICAL TOPICS

A set is an unordered collection of objects (numbers, symbols,
functions, or anything, even other sets)

𝑆 = 𝑎, 𝑏, 𝑐 or 𝐴1 = 1, 𝑓, 1

Objects in the set are its elements or members.

Elements in a set don’t have to be related.

𝑆 = turkish, red, 𝜋

Symbols ∈ and ∉ denote membership and non-membership.

7 ∈ 7,21,57

8 ∉ 7,21,57

Cardinality of a set is the number of its elements and it is
shown with two bars (| symbols)

𝑎, 𝑏, 𝑐 = 3

If 𝐴 = 1,2 , 3 , then 𝐴 =?

COM364 Week1 13

SETS

A set is an unordered collection of objects (numbers, symbols,
functions, or anything, even other sets)

𝑆 = 𝑎, 𝑏, 𝑐 or 𝐴1 = 1, 𝑓, 1

Objects in the set are its elements or members.

Elements in a set don’t have to be related.

𝑆 = turkish, red, 𝜋

Symbols ∈ and ∉ denote membership and non-membership.

7 ∈ 7,21,57

8 ∉ 7,21,57

Cardinality of a set is the number of its elements and it is
shown with two bars (| symbols)

𝑎, 𝑏, 𝑐 = 3

If 𝐴 = 1,2 , 3 , then 𝐴 = 2

COM364 Week1 14

SETS

Empty set is a set with no elements

{} or ∅

|∅| = 0

Singleton is a set with only one element

E.g., 1 or {}

An infinite set is a set with infinite number of elements. We
cannot write all elements of a list like this, so we sometimes
use three dots (…)

E.g., the set of natural numbers, ℕ = {1,2,3, … }

ℕ = ∞

𝑆 = 01, 0011, 000111, …

COM364 Week1 15

EMPTY SET, SINGLETONS, INFINITE SETS

Sometimes, we describe a set by writing a rule about its

elements

𝑛 rule about 𝑛

A colon (:) is sometimes used instead of the bar (|) above

𝑛 ∶ rule about 𝑛

For example,

𝑛 𝑛 = 𝑚2 for some 𝑚 ∈ ℕ

𝑆 = 𝑥 𝑥 ∈ ℤ and 𝑥 < 10

𝐴 = 𝑎 𝑎 is prime

COM364 Week1 16

DESCRIBING A SET

Union of two sets, A and B

𝐴 ∪ 𝐵 = 𝑛 𝑛 ∈ 𝐴 or 𝑛 ∈ 𝐵

Set intersection

𝐴 ∩ 𝐵 = 𝑛 𝑛 ∈ 𝐴 and 𝑛 ∈ 𝐵

Complement of a set, A

𝐴 = 𝑛 𝑛 ∉ 𝐴

Set dif ference (or relative complement)

𝐴 − 𝐵 = 𝑛 𝑛 ∈ 𝐴 and 𝑛 ∉ 𝐵

COM364 Week1 17

SET OPERATIONS

A is a subset of B (𝐴 ⊆ 𝐵) if every element of A is also a

member of B . (B is said to be a superset of A)

 ∅ is a subset of any set (including itself)

A is a proper subset of B (𝐴 ⊂ 𝐵) if A is a subset of B and not

equal to B (B must have at least one element that is not in A).

 ∅ is the only set that does not have a proper subset

A and B are disjoint (sets) if 𝐴 ∩ 𝐵 = ∅

COM364 Week1 18

SET RELATIONS

A sequence is an ordered collection of objects

(7,21,57)

Note that we use parenthesis, (), not brackets, {}

For a set, order is not important, but for a sequence, it is

7,21,57 = 21,57,7

7,21,57 ≠ 21,57,7

 Sequences can be finite or infinite.

 Finite sequences are often called tuples .

 A sequence with k elements is called a k-tuple .

 For example, (7,21) is a 2-tuple, which is more commonly
called an (ordered) pair.

 3-tuples are often called (ordered) triple ,

 4-tuples , (ordered) quadruple ,

 …

COM364 Week1 19

SEQUENCES AND TUPLES

The power set (𝓟) of a set (A) is the set that contains all

subsets of that set (A).

If 𝐴 = 0,1 , then
𝒫 𝐴 = ∅, 0 , 1 , 0,1

If 𝑆 = 𝑘 , then
𝒫 𝑆 =?

COM364 Week1 20

POWER SET

The power set (𝓟) of a set (A) is the set that contains all

subsets of that set (A).

If 𝐴 = 0,1 , then
𝒫 𝐴 = ∅, 0 , 1 , 0,1

If 𝑆 = 𝑘 , then
𝒫 𝑆 = 2𝑘

COM364 Week1 21

POWER SET

Cartesian product of two sets, A and B , is the set of all ordered

pairs where the first element is from set A and second element

is from set B

𝐴 × 𝐵 = 𝑥, 𝑦 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵

For example, if 𝐴 = 0,1 and 𝐵 = 𝑎, 𝑏, 𝑐

𝐴 × 𝐵 = 0, 𝑎 , 0, 𝑏 , 0, 𝑐 , 1, 𝑎 , 1, 𝑏 , 1, 𝑐

COM364 Week1 22

CARTESIAN PRODUCT

A relation is a set of ordered pairs.

More formally, a relation from set A to set B is a subset of AxB.

If 𝐴 = 𝑥, 𝑦, 𝑧 and 𝐵 = 1,2 ,

some relations from A to B are

𝑅1 = 𝑥, 2 , 𝑦, 1 , 𝑧, 1

𝑅2 = 𝑥, 1 , 𝑦, 2

𝑅3 = ∅

When A=B , and R is a subset of AxA , it is called a relation on A .

COM364 Week1 23

RELATIONS

A function (mapping) is a relation with some special properties.

If 𝑅 ⊆ 𝐴 × 𝐵 (i .e., R is a relation from A to B) and

 for each 𝑎 ∈ 𝐴 , there is exactly one ordered pair in R with 𝑎 ,

then R is a function.

A function f from set A (domain) to set B (range) is written as
𝑓: 𝐴 → 𝐵

and instead of writing 𝑎, 𝑏 ∈ 𝑓 , we write

𝑓 𝑎 = 𝑏 (𝑓 maps 𝑎 to 𝑏)

COM364 Week1 24

FUNCTIONS

A function 𝑓: 𝐴 → 𝐵 may not use all elements in B

If it does, it is an onto function.

In an ordinary function, two input values can map to the same

result (𝑓 𝑥 = 𝑓(𝑦) can happen)

If it doesn’t, f is one-to-one .

If f is both one-to-one and onto, it is a bijection (one-to-one

correspondence)

COM364 Week1 25

FUNCTIONS

 An (undirected) graph , G=(V,E) , is a set of points, V , with l ines

connecting some of these points, E . (E is a relation on V)

 The points are called nodes or ver tices (elements of V)

 The l ines are called edges (elements/pairs in E)

 Degree of a node is the number of edges connected to that node

(Each node in (a) below has degree 2; How about (b)?)

COM364 Week1 26

GRAPHS

 A directed graph is a graph where the direction of edges is

important (so we speak of outdegree and indegree)

 Graphs are frequently used to represent data (cities and

roads, devices and connections, people and relationships, …)

COM364 Week1 27

GRAPHS

 A path is a sequence of nodes connected by edges

 If a path doesn’t have repeated nodes, i t is a simple path (or trai l)

 A graph is connected i f any two nodes have a path between them

 A cycle is a path that star ts and ends in the same node

 A tree is a connected graph with no cycles

 A tree of ten has a specific top node cal led the root

 The nodes at the bottom with degree 1 are cal led the leaves

COM364 Week1 28

GRAPHS

An alphabet is a simple non-empty and finite set. For example,

Σ1 = 𝑎, 𝑏, 𝑐 , … , 𝑧

Σ2 = 0,1

The elements of an alphabet are called symbols .

A string (over an alphabet) is a finite sequence of symbols from
that alphabet (usually written together without any punctuation
or spaces).

For example, if Σ = a, b, c , then baba is a string over Σ .

If w is a string, then the length of w , written |w| , is the number
of symbols in w .

The string with no symbols is called the empty string , often
shown with 𝜀 . So, 𝜀 = 0 .

COM364 Week1 29

ALPHABETS AND STRINGS

Let w be a string over alphabet Σ

 wR denotes the reverse of w (the string obtained by writing w

in opposite order)

 z is a substring of w if it appears somewhere inside w .

 E.g., “cad” is a substring of “abracadabra”

If x=x1x2…xm and y=y1y2…yn are two strings where x i and y j are

symbols, the concatenation of x and y , written xy , is the string

simply obtained by appending y to the end of x

𝑥𝑦 = 𝑥1𝑥2 … 𝑥𝑚𝑦1𝑦2 … 𝑦𝑛

If 𝑥 = 𝑚 and 𝑦 = 𝑛 , then 𝑥𝑦 = 𝑚 + 𝑛

COM364 Week1 30

ALPHABETS AND STRINGS

When we concatenate a string with itself, we use superscript
notation

𝑥𝑥 = 𝑥 2

𝑤 𝑘 = 𝑤𝑤 … 𝑤
𝑘

Similar notation applies to alphabets.

Σ𝑘 is the set of strings of length 𝑘 , where each symbol is from Σ

For example, if Σ = 0,1 ,

 Σ1 = Σ , Σ2 = 00,01,10,11 , Σ3 = 000,001, … , 111

For any Σ , Σ0 = 𝜀

COM364 Week1 31

POWERS OF ALPHABETS AND STRINGS

Σ∗ is the set of all strings over alphabet Σ .

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ ⋯

Σ+ is similar but there is one important dif ference

Σ ∗ = Σ0 ∪ Σ+

In other words,

Σ ∗ − Σ+ = 𝜀

COM364 Week1 32

POWERS OF ALPHABETS AND STRINGS

If Σ is an alphabet, then any 𝐿 ⊆ Σ ∗ is a language over Σ .

So, a language is essentially a set of strings.

Examples:

 Turkish or English

 C programming language

 The language of all strings consisting of n 0’s followed by n 1’s,
for some n≥0: {ε, 01, 0011, 000111, 00001111,……}

 The set of binary numbers whose value is a prime
{10,11,101,111,1011 ,…}

 Σ* (set of all strings)

 ∅ , the empty language, is a language over any alphabet

 {ε}, the language consisting of only the empty string , is also a
language over any alphabet.

COM364 Week1 33

LANGUAGES

In Automata Theory, a problem is considered as recognizing
whether a given string is a member of a particular language

For example, consider the problem of testing a given number and
deciding if it is a prime number or not.

We can take all the prime numbers as a language, Lp.

And let the given number be a string, x .

The problem is now the same as deciding whether 𝑥 ∈ 𝐿𝑝 or not.

If we have a machine that can recognize members of Lp, then we
can give it x and it wil l give us the answer.

COM364 Week1 34

PROBLEMS AS LANGUAGE RECOGNITION

