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Theory of Computation 

 

Students often find theoretical  topics boring and dif ficult to 
understand BUT,  

- there are some fascinating big ideas and  

- theory is relevant to practice. 

For example,  

- Grammars    programming language and compiler design, 
natural language processing 

- Finite automata and regular expressions   string searching, 
pattern matching, digital  logic (circuit) design 

- Undecidability, complexity,  and intractability    what can we 
compute and how fast?  

 

We will  try to make it understandable and interesting  
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AUTOMATA THEORY 



These are central topics in theory of computation  

 

What are computers capable of?  

What are their limits?  

 

Mathematicians started working on these questions in the 1930s 
(before an ordinary “computer”  of today existed)  

 

Since then, technology improved a lot and these questions are now 
not only about theory but also has practical  effects.  

 

Each of Automata, Computability,  and Complexity deals with 
slightly different questions. Let’s  look at them in reverse order (to 
emphasize the reason for the given order) 
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AUTOMATA, COMPUTABILITY,  

AND COMPLEXITY 



There are many dif ferent problems,  

 some are easy: e.g., sorting a list 

 some are hard: e.g., scheduling classes for the entire university 
satisfying certain constraints (no two classes can be in the same 
room at the same time, a person cannot be in two places at the same 
time, etc.)  

 

What makes some problems  

computationally hard and others easy?  

 

 The interesting thing is that we still  don’t  know the exact 
answer. But we have a very useful classification.  

 For example, this has important effects in cryptography.  

 We will  explore this topic towards the end of the course.  
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COMPLEXITY THEORY 



What are the limits of computers?  

I.e., what can they solve and cannot solve?  

 

 Between 1930s and 1960s, mathematicians such as Gödel, 

Turing, and Church discovered that some problems cannot be 

solved by computers.  

 

 Theoretical computer models were developed in this field 

which eventually lead to actual computers.  
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COMPUTABILITY THEORY 



 This is about the mathematical computation models and their 

properties 

 

 These models have direct applications in practice  

 

 For example,  

 finite automata are (automata is plural, singular version is 

automaton) used in text processing, compilers, and hardware design;  

 context-free grammars are used in programming languages and 

artificial intelligence.  

 

 We will start with this topic because the other two will use the 

computer models we will see here.  
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AUTOMATA THEORY 



We will mostly use 
the board instead of 
slides  

 I will try to produce 
some summary notes 
each week but the 
main resources to 
study are the 
suggested books.  

There are many 
examples in these 
books that will be 
very helpful for exams 
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ABOUT THE COURSE 



 There will be  
 two mid-term exams and  

 a final exam 

 Each mid-term will 
count for 25% and  

 the final will be 50% of 
your course grade 

 Exam dates are 
determined by the 
department, so they 
can be different from 
the weeks in the 
syllabus 
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EXAMS AND GRADING 

Mid-term1

Mid-term2

Final



Fol low the 
course web 
page on the 
depar tment  
web s i te  for  
announcements  
and documents  

(Check i t  at  
least  twice a  
week ,  
espec ial ly  once 
before  a  c lass  
hour )  
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COURSE 

WEB PAGE 



 Finite Automata (FA) 
 Deterministic and Nondeterministic FA 

 Regular Expressions (REs) and Languages (RLs)  
 Including relations between these and FAs 

 Including: Pumping Lemma (PL) for RLs; Examples of non-regular 
languages; Proving that a language is not regular using PL  

 Context-Free Grammars (CFGs) and Languages (CFLs)  

 Pushdown Automata (PDA)  
 And their relation to CFLs, Pumping Lemma for CFLs 

 Turing Machines 

 Decidability 

 Reductions 

 Complexity (Time and Space)  

 Intractability (P and NP classes, NP -completeness) 

 Advanced Topics (if there is time)  
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OUTLINE OF TOPICS 



 This course wil l  be very mathematical  and we wil l  work with proofs 

 A good proof should be correct and clear (easy to understand)  

 

 When writ ing (or describing) a proof,  i t  is helpful to give three levels of 
detai l  
 1st level: A short phrase/sentence providing a “hint” of the proof  

 E.g. “proof by contradiction”, “proof by induction”, “follows from the pigeonhole 
principle”  

 2nd level: A short, one paragraph description of the main ideas  

 3rd level: The full proof 

 The book by Sipser is written in this way and I  suggest you do the same 
when needed 

 In the classroom, we wil l  generally talk about the proofs using the first  
two levels (the detai ls wil l  mostly be excluded)  
 When studying, you should think (and look at the books) about how to complete 

these details because you might be asked to give complete proofs in exams.  

 We wil l  go over some standard proof methods (Both textbooks have 
par ts on these)  
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WARNINGS 



 Sets 

 

 

 Sequences and Tuples 

 

 

 Relations and Functions 

 

 

 Graphs 

 

 

 Alphabets, Strings, and Languages  
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REVISION OF RELATED  

MATHEMATICAL TOPICS 



A set is an unordered collection of objects (numbers, symbols, 
functions, or anything, even other sets)  

𝑆 = 𝑎, 𝑏, 𝑐  or 𝐴1 = 1, 𝑓, 1  

Objects in the set are its elements or members.  

Elements in a set don’t have to be related.  

𝑆 = turkish, red, 𝜋  

Symbols ∈  and ∉ denote membership and non-membership.  

7 ∈ 7,21,57  

8 ∉ 7,21,57  

Cardinality  of a set is the number of its elements and it is 
shown with two bars (| symbols)  

𝑎, 𝑏, 𝑐 = 3 

If 𝐴 = 1,2 , 3 ,  then 𝐴 =?  
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SETS 



A set is an unordered collection of objects (numbers, symbols, 
functions, or anything, even other sets)  

𝑆 = 𝑎, 𝑏, 𝑐  or 𝐴1 = 1, 𝑓, 1  

Objects in the set are its elements or members.  

Elements in a set don’t have to be related.  

𝑆 = turkish, red, 𝜋  

Symbols ∈  and ∉ denote membership and non-membership.  

7 ∈ 7,21,57  

8 ∉ 7,21,57  

Cardinality  of a set is the number of its elements and it is 
shown with two bars (| symbols)  

𝑎, 𝑏, 𝑐 = 3 

If 𝐴 = 1,2 , 3 ,  then 𝐴 = 2 
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SETS 



Empty set is a set with no elements  

{} or ∅ 

|∅| = 0 

 

Singleton  is a set with only one element  

E.g., 1  or {}  

 

An infinite set  is a set with infinite number of elements. We 
cannot write all elements of a list like this, so we sometimes 
use three dots (…)  

E.g., the set of natural numbers, ℕ = {1,2,3, … }  

ℕ = ∞ 

𝑆 = 01, 0011, 000111, …  
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EMPTY SET, SINGLETONS, INFINITE SETS 



 

Sometimes, we describe a set by writing a rule about its 

elements 

𝑛 rule about 𝑛  

A colon (:) is sometimes used instead of the bar (|) above  

𝑛 ∶ rule about 𝑛  

 

For example,  

𝑛 𝑛 = 𝑚2  for some 𝑚 ∈ ℕ  

𝑆 = 𝑥 𝑥 ∈ ℤ and 𝑥 < 10  

𝐴 = 𝑎 𝑎 is prime  
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DESCRIBING A SET 



Union  of two sets, A  and B 

𝐴 ∪ 𝐵 = 𝑛 𝑛 ∈ 𝐴 or 𝑛 ∈ 𝐵  

 

Set intersection  

𝐴 ∩ 𝐵 = 𝑛 𝑛 ∈ 𝐴 and 𝑛 ∈ 𝐵  

 

Complement  of a set, A 

𝐴 = 𝑛 𝑛 ∉ 𝐴  

 

Set dif ference  (or relative complement)  

𝐴 − 𝐵 = 𝑛 𝑛 ∈ 𝐴 and 𝑛 ∉ 𝐵  
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SET OPERATIONS 



 

A  is a subset  of B (𝐴 ⊆ 𝐵 ) if every element of A  is also a 

member of B .  (B  is said to be a superset  of A) 

 ∅ is a subset of any set (including itself)  

 

A  is a proper subset  of B  (𝐴 ⊂ 𝐵 ) if A  is a subset of B and not 

equal to B  (B  must have at least one element that is not in A). 

  ∅ is the only set that does not have a proper subset  

 

A  and B  are disjoint  (sets) if 𝐴 ∩ 𝐵 = ∅ 
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SET RELATIONS 



A sequence  is an ordered collection of objects  

(7,21,57)  

Note that we use parenthesis, (), not brackets, {}  

For a set, order is not important, but for a sequence, it is  

7,21,57 = 21,57,7  

7,21,57 ≠ 21,57,7  

 Sequences can be finite or infinite.  

 Finite sequences are often called tuples .   

 A sequence with k  elements is called a k-tuple .   

 For example, (7,21)  is a 2-tuple, which is more commonly 
called an (ordered) pair.  

 3-tuples are often called (ordered) triple ,   

 4-tuples , (ordered) quadruple ,   

 …  
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SEQUENCES AND TUPLES 



 

The power set  (𝓟)  of a set (A) is the set that contains all 

subsets of that set (A).  

 

If 𝐴 = 0,1 ,  then  
𝒫 𝐴 = ∅, 0 , 1 , 0,1  

 

If 𝑆 = 𝑘 ,  then  
𝒫 𝑆 =?  
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POWER SET 



 

The power set  (𝓟)  of a set (A) is the set that contains all 

subsets of that set (A).  

 

If 𝐴 = 0,1 ,  then  
𝒫 𝐴 = ∅, 0 , 1 , 0,1  

 

If 𝑆 = 𝑘 ,  then  
𝒫 𝑆 = 2𝑘  
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POWER SET 



 

Cartesian product of two sets, A  and B ,  is the set of all ordered 

pairs where the first element is from set A  and second element 

is from set B 

 
𝐴 × 𝐵 = 𝑥, 𝑦 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵  

 

 

For example, if 𝐴 = 0,1  and 𝐵 = 𝑎, 𝑏, 𝑐  

 
𝐴 × 𝐵 = 0, 𝑎 , 0, 𝑏 , 0, 𝑐 , 1, 𝑎 , 1, 𝑏 , 1, 𝑐  
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CARTESIAN PRODUCT 



A relation  is a set of ordered pairs.  

 

More formally, a relation from set A  to set B  is a subset of AxB. 

If 𝐴 = 𝑥, 𝑦, 𝑧  and 𝐵 = 1,2 ,   

some relations from A  to B  are 

𝑅1 = 𝑥, 2 , 𝑦, 1 , 𝑧, 1  

𝑅2 = 𝑥, 1 , 𝑦, 2  

𝑅3 = ∅ 

 

When A=B ,  and R is a subset of AxA ,  it is called a relation on A .  
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RELATIONS 



A function  (mapping) is a relation with some special properties.  

 

If 𝑅 ⊆ 𝐴 × 𝐵  (i .e., R  is a relation from A  to B) and 

 for each 𝑎 ∈ 𝐴 ,  there is exactly one ordered pair in R  with 𝑎 ,  

then R  is a function.  

 

A function f  from set A  (domain) to set B  (range) is written as  
𝑓: 𝐴 → 𝐵  

and instead of writing 𝑎, 𝑏 ∈ 𝑓 ,  we write  

𝑓 𝑎 = 𝑏  (𝑓  maps 𝑎  to 𝑏 ) 
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FUNCTIONS 



A function 𝑓: 𝐴 → 𝐵  may not use all elements in B  

 

If it does, it is an onto  function.  

 

In an ordinary function, two input values can map to the same 

result (𝑓 𝑥 = 𝑓(𝑦) can happen)  

 

If it doesn’t, f  is one-to-one .   

 

If f  is both one-to-one and onto, it is a bijection  (one-to-one 

correspondence ) 
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FUNCTIONS 



 An (undirected) graph ,  G=(V,E) ,  is a set of points, V ,  with l ines 

connecting some of these points, E .  (E is a relation on V )  

 The points  are called nodes  or ver tices   (elements of V )  

 The l ines are called edges (elements/pairs in E)  

 Degree of a node is the number of edges connected to that node 

(Each node in (a) below has degree 2; How about (b )?) 
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GRAPHS 



 A directed graph  is a graph where the direction of edges is 

important (so we speak of outdegree and indegree) 

 Graphs are frequently used to represent data (cities and 

roads, devices and connections, people and relationships, …)  
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GRAPHS 



 A  path  is a sequence of nodes connected by edges  

 If  a path doesn’t  have repeated nodes, i t  is a simple path  (or trai l )   

 A graph is connected  i f  any two nodes have a path between them  

 A  cycle  is a path that star ts and ends in the same node 

 A tree is a connected graph with no cycles  

 A tree of ten has a specific top node cal led the root  

 The nodes at the bottom with degree 1 are cal led the leaves  
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GRAPHS 



An alphabet  is a simple non-empty and finite set. For example,  

Σ1 = 𝑎, 𝑏, 𝑐 , … , 𝑧  

Σ2 = 0,1  

The elements of an alphabet are called symbols .  

 

A string (over an alphabet)  is a finite sequence of symbols from 
that alphabet (usually written together without any punctuation 
or spaces).  

For example, if Σ = a, b, c ,  then baba is a string over Σ .  

If w  is a string, then the length  of w ,  written |w| ,  is the number 
of symbols in w .   

The string with no symbols is called the empty string ,  often 
shown with 𝜀 .  So, 𝜀 = 0 .  
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ALPHABETS AND STRINGS 



Let w  be a string over alphabet Σ 

 wR denotes the reverse of w  (the string obtained by writing w  

in opposite order)  

 z  is a substring  of w  if it appears somewhere inside w .   

 E.g., “cad” is a substring of “abracadabra”  

 

If x=x1x2…xm and y=y1y2…yn are two strings where x i and y j are 

symbols, the concatenation  of x  and y ,  written xy ,  is the string 

simply obtained by appending y  to the end of x   

𝑥𝑦 = 𝑥1𝑥2 … 𝑥𝑚𝑦1𝑦2 … 𝑦𝑛  

 

If 𝑥 = 𝑚  and 𝑦 = 𝑛 ,  then 𝑥𝑦 = 𝑚 + 𝑛  
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ALPHABETS AND STRINGS 



When we concatenate a string with itself, we use superscript 
notation 

𝑥𝑥 = 𝑥 2  

 

𝑤 𝑘 = 𝑤𝑤 … 𝑤
𝑘

 

 

Similar notation applies to alphabets.  

Σ𝑘  is the set of strings of length 𝑘 ,  where each symbol is from Σ 

 

For example, if Σ = 0,1 ,   

 Σ1 = Σ ,  Σ2 = 00,01,10,11 ,  Σ3 = 000,001, … , 111  

For any Σ ,  Σ0 = 𝜀  
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POWERS OF ALPHABETS AND STRINGS 



 

Σ∗  is the set of all strings over alphabet Σ .  

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ ⋯ 

 

Σ+  is similar but there is one important dif ference  

Σ ∗ = Σ0 ∪ Σ+  

 

In other words,  

Σ ∗ − Σ+ = 𝜀  
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POWERS OF ALPHABETS AND STRINGS 



If Σ  is an alphabet, then any 𝐿 ⊆ Σ ∗  is a language  over Σ .  

 

So, a language is essentially a set of strings.  

 

Examples:  

 Turkish or English 

 C programming language 

 The language of all  strings consisting of n 0’s followed by n 1’s, 
for some n≥0: {ε, 01, 0011, 000111, 00001111,……}  

 The set of binary numbers whose value is a prime 
{10,11,101,111,1011 ,…}  

 Σ* (set of all  strings)  

 ∅ ,  the empty language, is a language over any alphabet  

 {ε}, the language consisting of only the empty string ,  is also a 
language over any alphabet.  
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LANGUAGES 



In Automata Theory, a problem is considered as recognizing 
whether a given string is a member of a particular language  

 

For example, consider the problem of testing a given number and 
deciding if it is a prime number or not.  

 

We can take all  the prime numbers as a language, Lp.   

 

And let the given number be a string,  x .   

 

The problem is now the same as deciding whether 𝑥 ∈ 𝐿𝑝  or not.  

 

If we have a machine that can recognize members of Lp,  then we 
can give it x and it wil l  give us the answer.  
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PROBLEMS AS LANGUAGE RECOGNITION 


