ANKARA UNIVERSITY COM364 AUTOMATA THEORY
 Week 2
 About Proofs
 Kurtuluş KÜLLÜ

REMINDER

- This course will be very mathematical and we will work with proofs
- A good proof should be correct and clear (easy to understand)
- When writing (or describing) a proof, it is helpful to give three levels of detail
- $1^{\text {st }}$ level: A short phrase/sentence providing a "hint" of the proof
- E.g. "proof by contradiction", "proof by induction", "follows from the pigeonhole principle"
- $2^{\text {nd }}$ level: A short, one paragraph description of the main ideas
- $3^{\text {rd }}$ level: The full proof

LEVELS OF DETAIL EXAMPLE

Suppose $A \subseteq\{1,2, \ldots, 2 n\}$ with $|A|=n+1$.

True or False?
There are always two numbers in A such that one number divides the other number.

LEVELS OF DETAIL EXAMPLE

Suppose $A \subseteq\{1,2, \ldots, 2 n\}$ with $|A|=n+1$.

True or False?
There are always two numbers in A such that one number divides the other number.

Example: If $n=2, A \subseteq\{1,2,3,4\}$ and $|A|=3$.

- Case 1: If 1 is in A, because 1 divides all other numbers, statement will be true.
- Case 2: If 1 is not in A, A has to be $\{2,3,4\}$. And now, 2 divides 4.
How about $n=3$?

LEVELS OF DETAIL EXAMPLE

Suppose $A \subseteq\{1,2, \ldots, 2 n\}$ with $|A|=n+1$.

True or False? There are always two numbers in A such that one number divides the other number.

TRUE

Example: If $n=2, A \subseteq\{1,2,3,4\}$ and $|A|=3$.

- Case 1: If 1 is in A, because 1 divides all other numbers, statement will be true.
- Case 2: If 1 is not in A, A has to be $\{2,3,4\}$. And now, 2 divides 4.
How about $n=3$?

LEVELS OF DETAIL EXAMPLE

LEVEL 1

HINT 1

The Pigeonhole Principle

If you have 10 pigeons and 9 pigeonholes, then at least one pigeonhole will have more than 1 pigeon.

LEVELS OF DETAIL EXAMPLE

LEVEL 1

HINT 1

The Pigeonhole Principle
If you have $\mathrm{n}+1$ pigeons and n pigeonholes, then at least one pigeonhole will have more than 1 pigeon.

HINT 2

Every integer a can be written as $a=2^{k} m$, where m is an odd number and k is an integer.

Call m the "odd part" of a.

LEVELS OF DETAIL EXAMPLE

LEVEL 2

Proof Idea:

$$
\text { Given } A \subseteq\{1,2, \ldots, 2 n\} \text { with }|A|=n+1
$$

Using the pigeonhole principle, we'll show that there are elements $a_{1} \neq a_{2}$ in A such that

$$
a_{1}=2^{i} m \text { and } a_{2}=2^{j} m
$$

for some odd m and integers i and k.

LEVELS OF DETAIL EXAMPLE

LEVEL 3

Proof:

Suppose $A \subseteq\{1,2, \ldots, 2 n\}$ with $|A|=n+1$.
Write each element of A in the form $a=2^{i} m$ where m is an odd number in $\{1,2, \ldots, 2 n\}$.

Note that there are n odd numbers in $\{1,2, \ldots, 2 n\}$.
Since $|A|=n+1$, according to the pigeonhole principle, there must be two different numbers in A with the same odd part.

Let a_{1} and a_{2} have the same off part m.
Then, $a_{1}=2^{i} m$ and $a_{2}=2^{j} m$, so one must divide the other (If $\mathrm{j}>i, a_{1}$ divides a_{2} and vice versa).

REMINDER

- When writing (or describing) a proof, it is helpful to give three levels of detail
- $1^{\text {st }}$ level: A short phrase/sentence providing a "hint" of the proof
" E.g. "proof by contradiction", "proof by induction", "follows from the pigeonhole principle"
- $2^{\text {nd }}$ level: A short, one paragraph description of the main ideas
- $3^{\text {rd }}$ level: The full proof
- The book by Sipser is written in this way and I suggest you do the same when needed
- In the classroom, we will generally talk about the proofs using the first two levels (the details will mostly be excluded)
- When studying, you should think (and look at the books) about how to complete these details because you might be asked to give complete proofs in exams.
- We will go over some standard proof methods (Both textbooks have parts on these)

TERMINOLOGY

- A theorem is a mathematical statement that is proved to be true.
- We generally only use this word for statements of special interest
- Sometimes we prove statements only to use them in other (more important) proofs.
- These (less important) proven statements are often called lemmas.
- So, a lemma is like a theorem but it is often not the main thing we are interested in.
- Most theorems allow us to conclude easily that other, related statements are also true. These are called corollaries of the theorem.

FINDING PR00FS (1)

- Unfortunately, not always easy and there is no simple set of rules for doing this.
- But, there are some helpful strategies:
- First and perhaps most important thing is to read and understand the statement to prove
- Do you understand the notation?
- Can you rewrite the statement in your own words?
- Can you break the statement down and consider each part separately?
" Example1: a statement such as " P if and only if Q " or " P iff Q " is most of the time split into forward direction ("if P then Q ") and backward/reverse direction (" P only if Q " or "if Q then P ")
- Example2: Proving sets A and B are equal can be split into two parts. 1) Prove A is a subset of B (every element of A is also in B). 2) Prove B is a subset of A (every element of B is also in A).
- Next, for the statement or a part of it, try to think about whether you think it is true and why.
- Experimenting with some examples can be very useful.
- Can you find a counterexample (an example that makes the statement false)? If you can, you just proved that the statement is false. If you can't, the difficulty in finding a counterexample can give you an idea.

FINDING PROOFS (2)

- But, there are some helpful strategies:
- ... (previous page)
- If you still cannot see a way, try to simplify the statement.
- For example, if statement has a condition like $k>0$, you can try to prove for $k=1$. If successful, you can try for $k=2$, and so on until you can see a way for the general case (for $k>0$).
- If even the simpler version is difficult, try simplifying even further.
- Finally, when you think that you know how to prove, you must write it properly.
- A well-written proof is a sequence of statements where each statement follows in a simple way from previous statements.
- Carefully writing a proof is important for 2 main reasons:
- To make sure that there are no mistakes, and
- To enable a reader to understand it.

EXAMPLE 1

Prove that, for every graph G, the sum of the degrees of all the nodes in G is an even number.

First, make sure you understand what the statement is saying. Then, you can draw some graphs and observe if this is true.

$\begin{aligned} \text { sum } & =2+3+4+3+2 \\ & =14\end{aligned}$

Next, you can try to find a counterexample. Try to draw a graph in which the sum is an odd number. Can you now see an idea?

EXAMPLE 2

Prove that, for any two sets A and $B, \overline{A \cup B}=\bar{A} \cap \bar{B}$.

Try on your own...

EXAMPLE 2

Prove that, for any two sets A and $B, \overline{A \cup B}=\bar{A} \cap \bar{B}$.

Again, first make sure that you understand the statement.

We can show this in two steps, first show that every element of $\overline{A \cup B}$ has to be an element of $\bar{A} \cap \bar{B}$, and then show the opposite.

TYPES OF PROOF

- Proof by Construction
- Many theorems state that a particular type of object exists.
- Proof by construction proves such a theorem by showing how to construct the object.
- Proof by Contradiction
- Assume that the theorem is false.
- Then show that this assumption leads to a contradiction (an obviously false result)
- Proof by Induction
- Generally used to show that all elements of an infinite set have a property
- E.g., If the set of possible values is $\mathbb{N}=\{1,2,3, \ldots\}$ and the property is P, to prove that $P(n)$ is true, we show that both $P(1)$ and $P(k) \rightarrow$ $P(k+1)$ are true. These are called the basis step and induction step respectively.

PROOF BY CONSTRUCTION EXAMPLE

Statement

- For each even number $n>2$, there exists a 3-regular graph with n-nodes. (Note: a graph is k-regular if all nodes have degree k)

Proof

- Let $n>2$ be even, construct graph $G=(V, E)$ with n nodes as follows.

$$
\begin{gathered}
V=\{0,1, \ldots, n-1\} \\
E=\{\{i, i+1\} \mid \text { for } 0 \leq i \leq n-2\} \cup\{\{n-1,0\}\} \\
\cup\left\{\left.\left\{i, i+\frac{n}{2}\right\} \right\rvert\, \text { for } 0 \leq i \leq \frac{n}{2}-1\right\}
\end{gathered}
$$

- Picture the nodes around a circle. First row of E forms the circular connections. The second row nodes at opposite ends of the circle. You can see why each node in G has degree 3.

PROOF BY CONTRADICTION EXAMPLE(1)

Statement

- $\sqrt{2}$ is irrational

Proof

- Assume that $\sqrt{2}$ is rational.
- This means that there are two integers, m and n, such that

$$
\sqrt{2}=\frac{m}{n}
$$

- If both m and n are divisible by the same integer greater than 1, divide both by the largest such integer
- This doesn't change the value $\frac{m}{n}$
- Now, at least one of m and n must be odd
- Next, multiple both sides of the equation by n and obtain

$$
n \sqrt{2}=m
$$

PROOF BY CONTRADICTION EXAMPLE(2)

Proof (continued)

$$
n \sqrt{2}=m
$$

- Square both sides

$$
2 n^{2}=m^{2}
$$

- So, m^{2} and therefore m must be even. In other words, we can write $m=2 k$ for some integer k. Substitute this into the equation

$$
\begin{gathered}
2 n^{2}=(2 k)^{2}=4 k^{2} \\
n^{2}=2 k^{2}
\end{gathered}
$$

- But, this shows that n^{2} and therefore n are both even.
- We saw that both m and n are even. But we initially reduced them so that they were both not even.
- This is a contradiction, so our assumption that $\sqrt{2}$ is rational must be wrong. $\sqrt{2}$ is irrational.

PROOF BY INDUCTION EXAMPLE (1)

Statement (The formula for monthly loan payments)

- For each $t \geq 0$,

$$
P_{t}=P M^{t}-Y \frac{M^{t}-1}{M-1}
$$

P: principal/amount of Ioan
Y: monthly payment
M: monthly multiplier calculated with $M=1+I / 12$
where $I>0$: yearly interest rate,
e.g., $I=0.06$ means 6%
P_{t} : the remaining amount after month t
2 things happen each month
1: the amount of the loan increases because of the monthly multiplier

2: the amount decreases because of the payment.
So, $P_{0}=P, P_{1}=M P_{0}-Y, P_{2}=M P_{1}-Y, \ldots$

PROOF BY INDUCTION EXAMPLE (2)

Statement (The formula for monthly loan payments)

- For each $t \geq 0$,

$$
P_{t}=P M^{t}-Y \frac{M^{t}-1}{M-1}
$$

Proof

- Basis: Prove that the formula is true for $t=0$.

$$
P_{0}=P M^{0}-Y \frac{M^{0}-1}{M-1}=P-Y \frac{1-1}{M-1}=P \vee
$$

- Induction step: Show that for each $k \geq 0$, if the formula is true for $t=k$, it is also true for $t=k+1$.

PROOF BY INDUCTION EXAMPLE (3)

Induction step: In other words, assume that

$$
P_{k}=P M^{k}-Y \frac{M^{k}-1}{M-1}
$$

is true and try to reach

$$
P_{k+1}=P M^{k+1}-Y \frac{M^{k+1}-1}{M-1}
$$

from this assumption.

PROOF BY INDUCTION EXAMPLE (4)

We know that $P_{k+1}=P_{k} M-Y$. Insert the assumption for P_{k} into this to get

$$
P_{k+1}=\left[P M^{k}-Y \frac{M^{k}-1}{M-1}\right] M-Y
$$

Distribute M inside

$$
P_{k+1}=P M^{k+1}-Y M \frac{M^{k}-1}{M-1}-Y
$$

Group terms with Y with paranthesis

$$
\begin{gathered}
P_{k+1}=P M^{k+1}-Y\left[M \frac{M^{k}-1}{M-1}+1\right] \\
=P M^{k+1}-Y \frac{M^{k+1}-M+M-1}{M-1} \\
=P M^{k+1}-Y \frac{M^{k+1}-1}{M-1}
\end{gathered}
$$

MORE ON PROOFS

There are some variations (similar but slightly different versions) of induction

Deductive Proofs

- Start with some initial statement (hyphothesis) and reach a conclusion with a sequence of steps.
- Each step must follow (by some accepted logical principle) from either
- the given facts, or
- some of the previous steps, or
- a combination of the two above.

MORE ON PROOFS

Reduction to Definitions

- If you are not sure how to start, convert all terms in the hypothesis to their definitions.

The Contrapositive

- Every if-then statement has an equivalent form that is sometimes easier to prove.
- The contrapositive of the statement "if H , then C " is "if not C , then not H".

