
COM364 Automata Theory

Lecture Note∗2 - Nondeterminism

Kurtuluş Küllü

March 2018

The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input
symbol there was exactly one possible transition. In a nondeterministic FA (NFA), this condition is
relaxed. So, it is possible to not to have a transition from a state for an input symbol or there can
be several choices for the same symbol. Nondeterminism is a more general case. So, every DFA can
be considered as a NFA.

Example: Figure 1 shows our first example NFA. You should note three important differences
from those until now. First, there are two transitions from q1 for the input symbol 1. Second, for
some state and input symbols, there is no transition. For example, there is no transition for symbol
1 and state q2 or for symbol 0 and q3. Lastly, there is a transition from q2 to q3 for symbol ε. The
ε symbol here is used for the empty string as before and this transition means that the automaton
can go from q2 to q3 without any input symbol.

When a NFA is processing a string, we consider all possible computation paths. If any of these
possible paths leads to an accepting state at the end of the input, the NFA accepts that input.

This way of processing can be visualized by using a tree notation. The root of the tree corresponds
to the start of the computation. Every branching point in the tree corresponds to a point in the
computation at which the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state. As an example look at Figure 2. The example shows
the NFA N1 above processing string 010110.

Example: Let A be the language consisting of all strings over {0, 1} containing a 1 in the third
position from the end. (For example, 000100 is in A but 0011 is not.) An NFA to recognize A is
shown in Figure 3.

Note: Every NFA can be converted into an equivalent DFA. Most of the time, the DFA will
have any more states.

Question: What changes if we add ε-transitions from q2 to q3 and q3 to q4 in N2?

Formal Definition of a NFA

The formal definition of a NFA is similar to that of a DFA except some important differences in
details.

A NFA is a 5-tuple (Q,Σ, δ, q0, F ), where

1. (same as in DFA) Q is a finite set of states,

∗Based on the book “Introduction to the Theory of Computation” by Michael Sipser.

Figure 1: Our first example NFA, N1.

1



Figure 2: NFA N1 processing string 010110 visualized as a tree.

Figure 3: NFA N2.

2. (same as in DFA) Σ is the input alphabet,

3. (different) δ : Q×Σε → P (Q) is the transition function where Σε stands for Σ∪{ε} and P (Q)
is the power set of Q,

4. (same as in DFA) q0 ∈ Q is the start state, and

5. (same as in DFA) F ⊆ Q is the set of accepting (final) states.

Equivalance of NFA and DFA

Although NFA appear to be more powerful, the two types of automata are actually of equal power.
In other words, the class of languages that can be recognized by NFA are the same as that of DFA
and these are the regular languages.

Theorem: Every NFA has an equivalent DFA.
Proof Idea: We need to show that if a language is recognized by a NFA, there is also a DFA

that recognizes the same language. We will convert the NFA to a DFA that simulates it.
If the NFA has k states, the power set has 2k elements. These will be the states for the DFA.

Transitions, start and accepting states can all be arranged logically according to the NFA. For a
full proof, let N = (Q,Σ, δ, q0, F ) be the initial NFA and try to define the components of a DFA
D = (Q′,Σ′, δ′, q′0, F

′) that will recognize the same language.
It is easy to first assume that there are no ε-transitions, and then try to extend including them.

When extending, a new definition, called ε-closure, becomes useful. The ε-closure for a state q,
written as ε-closure(q) is defined as the set of states that can be reached from q following 0 or more
ε-transitions. ε-closure of a state always includes at least itself. For example, for the machine N1 in
Figure 1, ε-closure(q2) = {q2, q3}.

2



Figure 4: NFA N4.

Figure 5: DFA D4, which is equaivalent to the NFA N4 in Figure 4.

Example: Figure 4 shows an example NFA called N4 for which we will find the equivalent DFA,
D4. N4 has three states, {1, 2, 3}, so we construct the DFA D4 with eight states, one for each subset
of N4’s states. Thus D4’s state set is {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The start state of N4 is 1, so the start state for D4 should be ε-closure(1) = {1, 3}. The accepting
states of D4 should be the states that include an accepting state from N4. The only accepting state
of N4 is 1, so the accepting states of D4 are {{1}, {1, 2}, {1, 3}, {1, 2, 3}}. Lastly, the transitions can
be found from the transitions of N4 with careful analysis. We show the resulting D4 in Figure 5.
You should note that in the figure, there are six states although the power set of N4’s states has
eight elements. In particular, states corresponding to {1} and {1, 2} are not shown. This is because
there is no way to reach these states when we start from the start state. Hence, we omitted these
states in the figure.

(Back to) Closure Properties

Before we started discussing nondeterminism, we proved that the regular languages are closed under
union operation (by constructing a machine for A ∪B from the machines for A and B). This proof
would be much easier with nondeterminism as follows. If we have machines MA and MB that
recognize languages A and B respectively, we can simply combine these two to create a new machine
M by adding only a new start state and adding ε-transitions from this new state to the individual
start states of MA and MB . This is shown graphically in Figure 6.

Closure Under Concatenation: If A and B are regular languages, prove that AB is also
regular.

Because A and B are regular languages, there must be machines N1 and N2 that recognize them.
We can construct a new machine N from N1 and N2 as shown in Figure 7 to recognize AB. This
construction involves taking only the accepting states of N1, making them nonaccepting, and adding
ε-transitions from these states to the start state of N2. Start state of N is the start state of N1.

3



Figure 6: MA and MB can be combined in this way to create M , which will recognize A ∪B.

Figure 7: N1 and N2 can be combined in this way to create N , which will recognize AB.

4



Figure 8: N1 can be extended in this way to create N , which will recognize A∗.

Theorem: Regular languages are closed under the star operation.
Proof Idea: Let N1 be the automaton that recognize language A. The procedure shown in

Figure 8 can be used to construct N that can recognize A∗.

5


