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Until now, we talked about FA and regular expressions which are equally powerful and can be
used to recognize or describe regular languages. But lastly, when we looked at the pumping lemma,
we saw that there are languages such as {0n1n | n ∈ N} that is beyond the regular languages.

Now we will go beyond the regular languages and discuss context-free grammars (CFGs) and
context-free languages (CFLs) that they describe. A CFG is a mechanism to describe a language.
The languages that are described with CFGs are CFLs (and they include regular languages). Later,
we will discuss pushdown automata (PDA) which is a type of machine recognizing CFLs.

Example: Below you see the first example context-free grammar.

A→ 0A1

A→ B

B → #

Such a grammar is considered as a collection of substitution rules (or productions). These include
variables (nonterminals) and terminals (alphabet symbols). One of the variables is considered as the
start variable which is by convention often the variable on the left side of the arrow in the topmost
substitution rule.

In the example grammar above, A and B are the variables, 0, 1, and # are the terminals, and
A is the start variable. We will often use capital letters or words to indicate variables.

A grammar can be used to generate strings as follows:

1. Start with the start variable.

2. For one of the variables you have, use a rule with that variable on the left and apply the
substitution.

3. Repeat 2 until there are no variables.

Example: You can see an example string generation below.

A⇒ 0A1

⇒ 00A11

⇒ 000A111

⇒ 000B111

⇒ 000#111

Such a sequence of substitutions is called a derivation. Same information can be given with a
parse tree as in Figure 1. All strings that can be generated from a grammar is the language of
that grammar. If we call the grammar G, then its language is shown with L(G). For the example
grammar above, its language is {0n#1n | n ∈ N}.

Note: We use an extra notation as a shortcut. Instead of writing several rules for the same
variable on separate lines, we combine them in a single line with the bar symbol (|). E.g., instead
of writing A→ 0A1 and A→ B separately, we write A→ 0A1|B.

∗Based on the book “Introduction to the Theory of Computation” by Michael Sipser.
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Figure 1: The parse tree for the derivation example (string 000#111).

Formal Definition

A CFG is a 4-tuple (V,Σ, R, S), where

1. V is a finite set of variables,

2. Σ is a finite set of terminals disjoint from V ,

3. R is a finite set of rules with each rule being a variable and a string of variables and terminals,
and

4. S ∈ V is the start variable.

Example: For the example grammar we saw, V = {A,B}, Σ = {0, 1,#}, S = A, and R is the
set of rules given above in the first example.

Note: Often, we only write the rules as we did in the first example. The symbols that appear on
the left side of arrows are taken to be the variables. All remaining symbols except | are terminals.
Start variable is the left side variable of the top rule.

If u, v, and w are strings of variables and terminals, and A→ w is a rule in the grammar, then
we say that uAv yields uwv and write this as uAv ⇒ uwv.

Also, we say that u derives v and we write u⇒∗ v, if u = v or if there’s a sequence u1, u2, . . . , uk
for k ≥ 0 such that u⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v. So, the language of a grammar can be expressed
as {w ∈ Σ∗ | S ⇒∗ w}.

Example: G3 = ({S}, {a, b}, R, S) where R is S → aSb|SS|ε.
Note the use of empty string (ε) in this grammar. It allows S to be replaced with empty

string during derivations. So, some example strings that can be derived using these rules are
ε, ab, abab, aabb, aabbab. Can you describe the language of this grammar? Hint: Put ( symbol
instead of a and ) symbol instead of b.

Example: Consider the following grammar G4.

〈EXPR〉 → 〈EXPR〉+ 〈TERM〉 | 〈TERM〉
〈TERM〉 → 〈TERM〉 × 〈FACTOR〉 | 〈FACTOR〉

〈FACTOR〉 → (〈EXPR〉) | a

The parse trees for strings a+ a× a and (a+ a)× a can be seen in Figure 2.
A very important use of CFGs and parse trees in computers happens during program compila-

tion. A programming language compiler translates strings written in that language to the machine
language. While doing this, one of the stages is to correctly understand the meaning of the string.
CFGs are used to define programming languages and a part of the compiler (called parser) processes
given strings as if it is trying to find the parse tree for it.
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Figure 2: Parse trees for a+ a× a and (a+ a)× a according to CFG G4.

Designing CFGs

Once again, this process requires creativity and there is no general method to achieve this. But the
following techniques are often useful.

• Many CFLs are the union of simpler CFLs. So, breaking down and writing grammars for
each part can help. E.g., {0n1n | n ∈ N} ∪ {1n0n | n ∈ N}. For the first set, we can write
S1 → 0S11 | ε and for the second set, we can write S2 → 1S20 | ε. To combine, S → S1 | S2.

• If the language is regular (do not forget that the set of regular languages is a subset of the set
of CFLs), you can design the DFA and find the equivalent grammar by using a variable Ri for
each state qi, writing rules such as Ri → aRj if δ(qi, a) = qj , and Ri → ε if qi is accepting.

• Many CFLs contain strings with parts that are “linked” in the sense that a machine would
need to remember something about the first part when going over the second part. E.g.,
{0n1n | n ∈ N}. You can use rules like R → uRv if u and v are linked somehow and to force
the relationship between u and v.

• Strings can have recursive structures (and base cases for these recursive structures). For
example, if we have a palindrome, when you remove the first and last symbols, the remaining
string in the middle should also be a palindrome. The base case here is that the middle (or
the palindrome itself) can be the empty string. You can force this structure in a grammar by
defining recursive rules such as R→ uRu | vRv | ε.

Example: Write a CFG for language {w | w is a palindrome} on alphabet Σ = {0, 1}. (Same
language can be defined as

{
w | w ∈ {0, 1}∗ and w = wR

}
with wR meaning w reversed.)

S → 0S0 | 1S1 | 0 | 1 | ε

Example: Write a CFG that generates the language {w | w starts and ends with the same
symbol} on alphabet Σ = {a, b, c}.

S → aMa | bMb | cMc

Ambiguity

Sometimes, a grammar can generate the same string in different ways causing different possible
parse trees (and therefore, different meanings). This is not desirable in some applications such as
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Figure 3: Parse trees for a+ a× a according to CFG G5 showing that this grammar is ambiguous.

programming language design. If it is possible to generate a string with different parse trees, we say
that the grammar is ambiguous.

Example: Consider the grammar G5 given below.

〈EXPR〉 → 〈EXPR〉+ 〈EXPR〉 | 〈EXPR〉 × 〈EXPR〉 | (〈EXPR〉) | a

This grammar generates exactly the same strings with the grammar G4 we saw before. However,
ambiguity is a major difference between these two grammars. Consider the string a+ a× a. There
are two possible parse trees you can draw for this string according to G5. These can be seen in
Figure 3. On the other hand, all strings will have a single parse tree using G4, so that grammar is
unambiguous.

Note: Ambiguity is shown with different parse trees for the same string, NOT different deriva-
tions. Different derivations can be written for the same parse tree by changing the variable substi-
tuted at each step. If we put a standard to this and, for example, choose always the first variable
on the left (or right), then this derivation is called a leftmost (or rightmost) derivation.

Definition: A string w is derived ambiguously in CFG G if it has two or more different leftmost
(or rightmost) derivations. G is ambiguous if it generates a string ambiguously.

Note: For some ambiguous CFGs, we can write an equivalent unambiguous one (like the case
for G5 and G4), but some languages are “inherently ambiguous”, meaning that no unambiguous
CFG can be written for them. For example,

{
aibjck | i, j, k ∈ N and (i = j or j = k)

}
is one such

language. It is not possible to write an unambiguous grammar for this language.

Chomsky Normal Form (CNF)

Sometimes, it is useful to have a CFG in a simple, well-defined form and Chomsky Normal Form
(CNF) is one such form. For example, it is mostly useful for a grammar to be in CNF when we
speak about algorithms working on grammars.

Definition: A CFG is in CNF if every rule is in the form A → BC or A → a where a is any
terminal and A,B,C are any variables (except that B and C are not start variables). In addition,
we allow the rule S → ε only if S is the start variable.

Theorem: Any context-free language has a context-free grammar in Chomsky normal form that
generates it.

Proof Idea: Any grammar G can be converted into one in CNF. This is done in several steps
by replacing problematic rules with suitable ones without changing the language.

• First, add a new start variable (to ensure that the start variable doesn’t appear on the right
side of other rules).

• Then, eliminate ε-rules like A→ ε.

• Lastly, work on other rules (unit rules like A→ B and those with more than two variables on
the right).
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Example: Let G6 be as follows and convert it to a CFG in CNF.

S → ASA | aB
A→ B | S
B → b | ε

The following changes will convert G6 to a CFG in CNF.

1. Add new rule S0 → S, where S0 is the new start variable.

2. (a) Remove B → ε by adding A→ ε and S → a.

(b) Remove A→ ε by adding S → SA | AS | S.

3. (a) Remove unit rules S → S (by adding nothing) and S0 → S by adding possible S replace-
ments to the S0 rule as S0 → ASA | aB | a | AS | SA.

(b) Remove unit rules A→ B (by adding b to the A rule instead of B) and A→ S by adding
possible S replacements to A rule as A→ b | ASA | aB | a | AS | SA.

4. Go over all the rules so that we either have only a single terminal or two variables on the
right side of each rule. This can simply be achieved by adding new variables and rules. The
resulting grammar in CNF that generates the same language as G6 is given below.

S0 → AA1 | UB | a | AS | SA
S → AA1 | UB | a | AS | SA
A→ b | AA1 | UB | a | AS | SA
A1 → SA

U → a

B → b
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