Pulsarlar (Atarcalar)

 Pulsarlar: Atım şeklinde enerjik ışınım yayınlar; hızlı dönerler; manyetik alanları vardır; nötron yıldızıdırlar; dipol manyetosferleri vardır

Giriş

• <u>**Pulsarlar**</u> – Nötron yıldızları (NS)

Hızlı dönme hareketlerinin yavaşlaması sonucu kaybettikleri (dönme) enerjiyi yayınlarlar. (P \leq 1 s , dP/dt > 0)

- <u>NS</u>– dejenere gaz basıncına sahiptir (Fermi dışarlama ilkesi gereğince)
- Pulsasyon yapan X-ışın çiftleri de vardır</u>- Bunlarda NS, bileşen yıldızından üzerine madde aktarımı yapar.
 (P ~ 10 s, dP/dt < 0)

Pulsar / Atarca'lar

- Puls şeklindeki radyo ışınımları ile tanımlanmıştır
- Bir çok puls'ın ortalaması şöyledir:

Puls profilleri

- Ortalama puls profilleri çok üniformdur
- Puls'lar kendi arasında şekil, şiddet ve evresine göre farklılık gösterebilir.

Atım'lar, puls'un zarfı boyunca değişim gösteren polarizasyona sahiptir.

Dönme periyodunun kararlılığı

- **Dönme periyodu oldukça kararlıdır**: Puls kararlılığı mekanik bir saattin 1/10¹² duyarlığa sahiptir.
 - bu derecedeki yüksek duyarlık kendi puls'ları arasındaki değişimi ölçme imkanını sunar.
- Beyaz cüce (WD) pulsasyonu mümkün mü?
- **NS'nın dönme dönemleri?** Örneğin Crab pulsarının periyodu P~1/30 s

Nötron yıldızının dönmesi

Yapısal kararlılığını koruyabilmesi için:

Kütle çekim kuvveti > santirifuj kuvveti olmalıdır.

bu şart sağlanmazsa yıldız dağılır.

buradan:

 $G = 6.67 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}; P_{\text{Crab}} = 33 \times 10^{-3} \text{ s}$

Crab pulsarına ait bu sayısal değerleri
yazarsak:
$$3\pi$$

 $\rho > \frac{3\pi}{6.67 \times 10^{-11} \times 1100 \times 10^{-6}}$ kg m⁻³
ve $\rho > 1.3 \ge 10^{14}$ kg m⁻³

Bu değer 10⁹ km/m³'lük yoğunluğa sahip WD'ler için çok yüksektir.

Puls'ların enerji kaynağı

• Pulsarlar yavaşlarlar => dönme enerjisi kaybı gözlenen ışınımı karşılayabilir mi?

• Dönme enerjisi: $E = \frac{1}{2}I\omega^2 = \frac{I}{2}\left(\frac{4\pi^2}{P^2}\right) = \frac{2I\pi^2}{P^2}$

$$\frac{dE}{dt} = \frac{d}{dt} \left(\frac{2I\pi^2}{P^2} \right) = -\frac{4I\pi^2}{P^3} \frac{dP}{dt}$$

Crab pulsarının enerjisi

Crab pulsarı

- M ~ 1 M_{\odot}
- P = 0.033 saniye

$$-R = 10^4 m$$

$$I = \frac{2}{5}MR^2 = \frac{2}{5} \times 2 \times 10^{30} \times 10^8 \text{ kg m}^2$$

 $= 0.8 \text{ x } 10^{38} \text{ kg } \text{m}^2$

ve
$$\frac{dE}{dt} = \frac{-4 \times 0.8 \times 10^{38}}{(0.033)^2} \times 10 \left(\frac{1}{P} \frac{dP}{dt}\right) watts$$

 $= -3 \times 10^{42} \left(\frac{1}{P} \frac{dP}{dt}\right) watts$
gözlemlerden: $\frac{1}{P} \frac{dP}{dt} \sim 10^{-11} s^{-1}$
böylece pulsarın
enerji kaybı: $-\frac{dE}{dt} \approx 3 \times 10^{31} watts$

Bu değer, 2 - 20 keV bandında gözlenen enerji kayıp oranından daha büyüktür. Crab'ın gözlenen luminozitesi:

~ 1.5×10^{30} watts.

Dolayısıyla pulsarın yavaşlama enerjisi nebulanın gözlenen ışınımını karşılayabilir.

Manyetik dipol enerji kaybı için karakteristik yaş:

 $\tau = P/(2(dP/dt))$ = 3.3.10⁻³/2 x 4.10⁻¹⁴ s ~ 1300 years

Crab nebulası 1054'de patlamıştır dolayısıyla tahmin uyumludur.

Nötron Yıldızları

• <u>Genel parametreler</u>:

- $R \sim 10 \text{ km} (10^4 \text{ m})$
- $\rho_{icyapi} \sim 10^{18} \text{ kg m}^{-3} = 10^{15} \text{ g/cm}^3$
- M ~ 1.4 3.2 ${\rm M}_{\odot}$
- yüzey gravitesi, g = GM/R² ~ 10^{12} m/s²

• Şimdi NS için manyetik alanı (**B**) bulmaya çalışacağız.

Manyetik indüksiyon

Manyetik akı,

Yüzey
alanındaki
değişim
oranı
$$B_{ns}$$

 B_{Sun} $= \left(\frac{7 \times 10^8}{10^4}\right)^2 \cong 5 \times 10^9$

- Güneş bir çok farklı ölçekte ve şiddette manyetik alana sahiptir. Ancak dipol alanı çevrimden çevrime değişir ve ≈ 0.01 Tesla'dır.
- Böylece NS için manyetik alan şiddeti :

 $B_{ns} \sim 5 \ge 10^7$ Tesla = $5 \ge 10^{11}$ Gauss

• Eğer dönmeden ileri gelen enerji kaybı manyetik dipol ışınımı ile sağlanıyorsa :

B ~
$$3.3 \times 10^{15} (P \dot{P})^{\frac{1}{2}}$$
 Tesla

veya çoğu pulsar için $\sim 10^6$ - 10^9 Tesla

NS'nın iç yapısı

NS içyapısına ait bölgeler

Ana bileşenler:

(1) kristalize katı kabuk
(2) nötrondan oluşmuş sıvı iç yapı
- ρ = 2.10¹⁷ kg/m³ deki sınır bölge – nükleer maddenin yoğunluğu

Dış kabuk:

- Beyaz cüclerin maddesine benzeyen bu kısım katıdır
- relativistik dejenere elektron gazı içerisine gömülü halde bulunan Fe çekirdekleri Coloumb latis yapı oluşturur
- Latis yapı, ağır çekirdekler için minimum enerjiyi temsil.

İç kabuk :

- Nötronca zengin latis çekirdekler, dejenere serbest nötronlar ve dejenere elektron gazı.

- For $\rho > 4.3.10^{14} \text{ kg/m}^3 - \text{nötron "sızdırma" noktası, ağır çekirdekler kararsızdır ve nötron yayarlar (sızdırırlar).$

- nötron akışkan basıncı ρ ile birlikte artar

LMXB sistemleri, NS'nın yapısına dair gözlemsel deliller sunar

Gravitasyonel olarak kırmızıya kaymış NS'a ait tayf çizgileri

- XMM-Newton gözlemleri, kırmızıya kaymış tayf çizgileri belirledi.
- Cottam et al. (2002, Nature, 420, 51): Bunlar EXO 0748-676'dan kaynaklı 28 adet X-ışın parlaması idi.

• Not: $z = (\lambda - \lambda_o)/\lambda_o$ ve $\lambda/\lambda o = (1 - 2GM/c^2r)^{-1/2}$

20

X-ışın soğurma çizgileri

Sakin evre Sakin evre

düşük T yüksek T parlamaları parlamaları Fe XXV & O VIII Fe XXVI (T > 1.2 keV)(T < 1.2 keV)Kırmızıya kaymış, yüksek derecede iyonize olmuş gaz z = 0.35'e neden olan NS'nın gravite alanı: $M = 1.4 - 1.8 M_{\odot}$ R = 9 - 12 km21

Pulsar Manyetosferleri

Parçacıklara uygulanan kuvvetler:

Parçacık şu 2 kuvvetle idare edilir

- gravite (g)
- elektromanyetizma

Gravite

$F_{g_{ns}} = m_e g_{ns} = 9 \times 10^{-31} \times 10^{12} \cong 10^{-18}$ Newton

$$\frac{\text{Manyetik kuvvet}}{F_B = evB = 1.6 \times 10^{-19}} \frac{2\pi (10^4 m)}{33 \times 10^{-3} s} (10^8 T)$$
$$\cong 3 \times 10^{-5} \text{ Newton}$$

Bu değer kütle çekim kuvvetinden 10¹³ kat daha büyüktür, dolayısıyla parçacık dağılımında etkin olan kuvvettir.

Nötron yıldızı manyetosferi

Vakum ortamında dönen bir NS için:

NS'nın yüzeyindeki elektrik
alan:

$$E \cong Bv \cong 10^8 \times 2 \times 10^6 Vm^{-1}$$

 $= 2 \times 10^{14} Vm^{-1}$

NS'nın yarıçapındaki potansiyel fark:

 $\Phi = ER \cong 10^{18}V$

Elektron/proton ivmelenmesi

Gerçekte ise

- Yüklü parçacıklarının NS etrafındaki dağılımı, elektrik alanı nötralize eder.
- => yaygın manyetosfer oluşur
- Dağılmış yüklerden kaynaklı statik alan, zorlanmış elektrik alanı iptal eder; yani:

$$\mathbf{E} + 1/\mathbf{c} \ (\mathbf{\Omega} \mathbf{x} \mathbf{r}) \mathbf{x} \mathbf{B} = \mathbf{0}$$

burada E ve B elektrik ve manyetik alanlar; Ω ise NS'nın açısal hızıdır.

Manyetosfer yük dağılımı

- Dönme ve manyetik kutup eksenleri çakışıktır
- Zorlanmış elektrik alan yükleri yüzeyden uzaklaştırdığı için, yüzeyde yük ve akım bulunmaz Manyetosfer
- Işık silindiri: co-rotating parçacıkların dönme hızının ışık hızına eşit olduğu radyal uzaklıktır.
- Açık alan çizgileri ışık silindirini geçip gittiğinden, parçacıklar bu çizgiler boyunca dışarıya akar
- kritik alan çizgilerinin tabanları ISM ile aynı elektrik potansiyele sahiptir.
- kritik alan çizgileri NS manyetosferinden gelen +v_e ve -v_e akımlarını böler.

Pulsar modelleri

Burada manyetik ve dönme eksenleri çakışıktır:

NS ile birlikte dönen plazma, ışık silindirinin içerisinde kapalı olan, manyetik alan boyunca uzanır

Işık silindirinin sınırında şu sağlanmalıdır*:*

 $\frac{2\pi r_c}{c} = c$

Daha gerçekçi bir model...

- Puls oluşması için manyetik ve dönme ekenleri çakışık olmamalıdır.
- Plazma dağılımı ve manyetik alan NS'da oldukça karışıktır.
- r < r_c olan yerde, yükleri ayrışmış co-rotating manyetosfer vardır.
- Parçacıklar, ışık silindirinin sınırına kadar kapalı olan alan çizgileri boyunca hareket ederler.
- açık alan çizgilerindeki parçacıklar manyetosferden dışarıya doğru akarlar.
- radyo ışınımı açık kutup başlığı bölgeleri ile çakışıktır.

Dipol manyetik alan

Ortamda plazma bulunmasa bile, manyetik ve dönme eksenleri çakışmıyorsa, dönen NS ışınım yapar ve enerji kaybeder.

Bu değişken yapıda elektrik dipol'ün manyetik dipol benzeridir:

$$\frac{dE}{dt} \propto -\omega^4 R^6 B^2 \sin^2 \alpha$$

Pulsar yapısına genel bakış

- Pulsar manyetik ve dönme eksenleri çakışmayan dönen bir magnet olarak düşünülebilir.
- 2. Manyetosferdeki elektromanyetik kuvvetler gravitasyondan daha baskındır.
- 3. Işık silindirinin ötesine geçen alan çizgileri açılmıştır.
- 4. Açık çizgilerinden kaçan parçacıklar, güçlü alan tarafından ivmelendirilirler.

Pulsar'larda ışınım mekanizmaları

Uyumsuz ışınıma örnek

Termal dengede ışınım yapan bir parçacık alalım. Karacisim ışınımı yapacak olan bu parçacığın ışınım yaptığı max.
dalgaboyu vardır: Bunu radyoda
ν~10⁸ Hz or 100MHz; λ~3m alalım.

Pulsar ışınımı ısısal mı?

T'yi bulmak için Rayleigh-Jeans yaklaşımını kullanalım:

$$I(v) = \frac{2kTv^2}{c^2} \quad \text{Watts m}^2\text{Hz}^{-1}\text{ster}^{-1} (1)$$

Crab'ın dünyada gözlenen akısı, F~10⁻²⁵ Watts m² Hz⁻¹ster⁻¹ Kaynağın yarıçapı R~10km ve uzaklığı D~1 kpc:

$$I(\upsilon) = \frac{F}{\Omega} = F\left(\frac{D^2}{R^2}\right) = \frac{10^{-25} (3 \times 10^{19})^2}{(10^4)^2}$$

buradan

$I_v = 10^6$ Watts m²Hz⁻¹ster⁻¹

Eşitlik (1) den:

$$T = \frac{I(\nu)c^2}{2k\nu^2} K = \frac{10^6 (3 \times 10^8)^2}{2 \times 1.4 \times 10^{-23} (10^8)^2} K$$

 $=3 \times 10^{29} K$

Bu sıcaklık bir karacisim olamayacak kadar yüksektir!

Uyumsuz X-ışın ışınımı

- Crab gibi bazı pulsarlar, IR, optik, X-ışın ve γ-ışınlarında puls verirler.
- - bunlar uyumlu mudur?
- Muhtemelen değil– X-ışınlarının parlaklık sıcaklığı ~10¹¹ K'dir, buna karşılık gelen elektron enerjisi 10MeV, yani uyumsuz ışınımla çakışıktır.

radyo	IR, optik, X-ışın, γ- ışın
uyumlu	uyumsuz

Uyumlu ışınım modelleri

yüksek- \underline{B} yüksek enerjili parçacık demektir

Pulsarlarda ışınım süreçleri

- Manyetik alandaki en önemli süreçler:
 - cyclotron / sayklotron
 - synchrotron / sinkrotron | 1ş11

Pulsarın optik & X-ışın ışınımı

• Eğrisel ışınım =>

radyo ışınımı

Yüksek manyetik alan; elektronlar alan çizgilerini takip eder; açılma açısı ~ 0°

Eğrisel ışınım

Bu sinkrotrona benzeyen bir ışınımdır.
 Eğer v_e-~ c ve ρ = eğrilik yarıçapı ise, ışınım dairesel yörüngede dolanan e-nunkine benzerdir:

$$\upsilon_L = \frac{c}{2\pi\rho\gamma}$$

burada v_L gyro frekansıdır

Işınıma ait etkin frekans şöyle tanımlanır:

Sinkrotron ve eğrisel ışınım

• Eğrisel ışınımın (c.r.) tayfı sinkrotron ışınımınınkine benzerdir.

- Elektronlar için: eğrisel ışınımın şiddeti << sayklotron veya sinkrotron
- Radyo ışınımı bu mekanizmayla oluşuyorsa uyumlu olmak zorundadır.

Pulsar ışınımının hüzmelenmesi

- Hüzmelenme; ışınımın yüksek derecede yöne bağlı olmasıdır
- Şunları dikkate alın;
 - radyo uyumlu, X-ışın ve optik uyumsuz ışınım
 - ışınım kaynağının yeri frekansa bağlıdır
 - ışınım manyetik alan çizgileri boyunca yönelmiştir
 - ışınım konisi Yer'e yönelmişse puls'lar görülebilir
- <u>Model</u>:
 - radyo ışınımı manyetik kutuplardan gelir
 - X- ve optik ışınım, ışık silindirinden gelir

Pulsarlarda ışınım yapan bölgelerin gözlemsel özellikleri

- Radyo pulsları manyetik kutuplardan dışarı kaçan yüklü parçacıklardan gelir:
 - Radyo huzmesi genişliği
 - Polarize radyo ışınımı
 - Şiddetteki değişim
- Optik ve X-ışınımı, ışık silindiri içerisinde oluşur
 - Yüksek enerjilerde ışınım sadece kısa dönemli genç pulsarlarda görülür
 - Bilinen 500'den fazla pulsardan sdece 8 adedi SN artıkları ile ilişkilidir
- Işık silindiri içerisindeki optik ve X-ışınımı :
 - Puls'un kararlılığı ışınımın değişmeyen sabit bir konumdan geldiğini gösterir
 - Yüksek derecede yöne bağlı olması bu ışınımın alan çizgilerinin birbirinden ayrılmadığı bölgelerde meydana geldiğinin göstergesidir
 - Silindir civarındaki bölgelerde düşük parçacık yoğunluğu vardır öyle ki bu parçacıklar aralarında çarpışmak suretiyle yüksek enerjilere ivmelenirler

Işık silindiri

• Işınım kaynakları ışık silindirine yakın yerdedir

• burada dönme ve manyetik eksenler ortagonaldir.

• <u>Relativistik hüzmelenme</u> ışık silindiri civarında v~c hızına sahip parçacıklardan kaynaklanabilir.

- ışınım hüzme haline şöyle dönüşür

$$= \gamma^{-1}, \qquad \gamma = \frac{1}{\sqrt{1-\beta^2}}$$
 (Lorentz faktör)

 Zaman daralması etkisi (2γ²) nedeniyle hüzme gözlemciyi şu süre kadar tarar:

$$\tau \cong \left(\frac{P}{2\pi}\right) \frac{1}{2\gamma^2 \gamma} = \frac{P}{4\pi\gamma^3}$$

gözlenen puls genişliğini açıklayabilmek için $\gamma \sim 2-3$ olmalıdır.

özetlersek

- Radyo ışınımı
 - uyumludur
 - kutup başlıklarında eğrisel ışınım vardır

- X-ışınımı
 - uyumsuzdur
 - ışık silindirinde sinkrotron ışınımı vardır

Pulsarların yaşı

 $P/2 \dot{P}$ oranı pulsarın karakteristik yaşını verir

Gerçekte yaşı bundan daha büyüktür

Gözlenebilen pulsarlar bu değer, ~ 5 x 10⁴ yıldır.

Pulsar Populasyonu

- Gözlenen populasyonu sürekli kılabilmek için, her 50 yılda 1 pulsar oluşmalıdır.
- Yani her 50-100 yılda 1 SN oluşmalıdır.
- Oysa SNR ile ilişkili sadece 8 pulsar gözlenmiştir (pulsar yaşam süresi 1-10 milyon yıl, SNR'nınki 10-100 bin yıldır...yani uyumludurlar)
- Ancak SN'ların tümü pulsar oluşturmaz (örn. SN 1987A) !!!

Puls profilleri

Puls profilleri

