Heat Engines

Work can be easily converted to other forms of energy, but converting other forms of energy to work is not that easy. A device which is converting heat to work is called heat engines.

Heat engines characterizedby the following;

- They recieve heat from a source.
- They convert part of this heat to work (with the aid of shaft or something else).
- They reject excess heat to sink.
- They operate on cycle.

Heat engines and other cyclic devices usually involve a fluid and from which heat is transferred while undergoing a cycle. The fluid is called the working fluid.

Fig 1. Schematic representation of heat engine

Fig. 2 Schematic representation of steam power plant

Here;

Q_{in}: Amount of heat supplied to steam in boiler from high-temperature source.

 Q_{out} : Amount of heat rejected from steam in condenser from to a low-temperature sink.

 $W_{\mbox{\scriptsize out}}$: Amount of work delivered by steam as it expands in turbine.

 W_{in} : Amout of work required to compress water to boiler pressure.

Wnet,
$$out = Wout - Win$$

In general energy balance around heat engine;

$$W_{net,out} = Q_H - Q_L$$

Thermal Efficiency

The fraction of the heat input that is converted to net work output is a measure of the performance of a heat engine and is called the thermal efficiency. Thermal efficiency denoted by " τ_{th} ".

Performance = _____

For heat engines, the desired output is the net work output and the required input is the amount of heat supplied to the working fluid. Then the thermal efficiency of a heat engine can be expressed as;

Thermal efficiency = -----

 $\tau_{th} = -\!\!-\!\!-\!\!-$

It can also expressed as;

 $\tau_{th} =$ ----

 Q_H : Magnitude of heat transfer between the cyclic device and the high-temperature medium at temperature T_H .

 Q_L : Magnitude of heat transfer between the cyclic device and the low-temperature medium at temperature T_L .

$$\begin{split} W_{net, \text{ out}} &= Q_H - Q_L \\ \tau_{th} &= --- \\ \tau_{th} &= --- \end{split}$$