Heat Engines

Work can be easily converted to other forms of energy, but converting other forms of energy to work is not that easy. A device which is converting heat to work is called heat engines.

Heat engines characterizedby the following;

- They recieve heat from a source.
- They convert part of this heat to work (with the aid of shaft or something else).
- They reject excess heat to sink.
- They operate on cycle.

Heat engines and other cyclic devices usually involve a fluid and from which heat is transferred while undergoing a cycle. The fluid is called the working fluid.

Fig 1. Schematic representation of heat engine

Fig. 2 Schematic representation of steam power plant
Here;
$\mathrm{Q}_{\text {in }}$: Amount of heat supplied to steam in boiler from high-temperature source.
$Q_{o u t}$: Amount of heat rejected from steam in condenser from to a low-temperature sink.
$\mathrm{W}_{\text {out }}$: Amount of work delivered by steam as it expands in turbine.
$\mathrm{W}_{\text {in }}$: Amout of work required to compress water to boiler pressure.

$$
\text { Wnet,out = Wout }- \text { Win }
$$

In general energy balance around heat engine;

$$
\mathrm{W}_{\text {net, out }}=\mathrm{Q}_{\mathrm{H}}-\mathrm{Q}_{\mathrm{L}}
$$

Thermal Efficiency

The fraction of the heat input that is converted to net work output is a measure of the performance of a heat engine and is called the thermal efficiency. Thermal efficiency denoted by " $\tau_{\text {th }}$ ".
Performance =

For heat engines, the desired output is the net work output and the required input is the amount of heat supplied to the working fluid. Then the thermal efficiency of a heat engine can be expressed as;
Thermal efficiency =

$$
\tau_{\mathrm{th}}=
$$

It can also expressed as;

$$
\tau_{\mathrm{th}}=
$$

Q_{H} : Magnitude of heat transfer between the cyclic device and the high-temperature medium at temperature T_{H}.
Q_{L} : Magnitude of heat transfer between the cyclic device and the low-temperature medium at temperature T_{L}.

$$
\begin{aligned}
& \mathrm{W}_{\text {net, out }}=\mathrm{Q}_{\mathrm{H}}-\mathrm{Q}_{\mathrm{L}} \\
& \tau_{\mathrm{th}}=- \\
& \tau_{\mathrm{th}}=-
\end{aligned}
$$

