

Sediment Toxicity Tests

- Can provide rapid information on the potential toxicity of contaminants to benthic organisms,
- Can be used to determine the relationship toxicity and bioavailability,
- Investigate interactions among contaminants,
- Determine the saptio-temporal distributions of contaminants,
- Evaluate hazards of dredge material,
- Estimate the effectiveness of management facilities.

Sediment toxicity tests have limitations

- Collection, handling and storage may alter bioavailability,
- Depletion of sediment sorbed contaminants and kinetics may reduce bioavailability,
- Natural characteristics of sediment may influence the responce of test organisms,
- Chronic testing methods of sublethal effects are not available for evaluating contaminant sediment.

Water and sediment quality criteria for toxic compounds

Water quality criteria (WQC) and sediment quality criteria (SQC) reported in draft EPA documents (U.S. EPA, 1991a-e).

(0.0. 2114 17712 0).							
Compound	$\log K_{\infty} \ (\text{L/kg}_{\infty})$	WQC (μg/L)	$\begin{array}{c} SQC_{\infty} \\ (\mu g/g_{\infty}) \end{array}$	SQC at 1% OC (μg/g)			
Dieldrin							
Freshwater	5.16	0.0625	9.03"	0.0903			
Salt water	5.16	0.1147	16.6	0.166			
Endrin							
Freshwater	4.82	0.061	4.03	0.0403			
Salt water	4.82	0.011	0.73	0.0073			
Acenaphthene							
Freshwater	3.78	23.0	138	1.38			
Salt water	3.78	40.4	243	2.43			
Fluoranthene							
Freshwater	5.10	8.12	1022	10.22			
Salt water	5.10	10.65	1341	13.41			
Phenanthrene							
Freshwater	4.36	6.32	123	1.23			
Salt water	4.36	8.26	161	1.61			

^{*}SQC_{oc} = K_{oc} * WQC = $(10^{5.16} \text{ L/kg}_{oc})$ * $(10^{-3} \text{ kg}_{oc}/\text{g}_{oc})$ $(0.0625 \text{ }\mu\text{g} \text{ dieldrin/L})$ = $9.03 \text{ }\mu\text{g} \text{ dieldrin/g}_{oc}$.

Taken from: https://books.google.com.tr/books?id=YDqDy4bkW2QC&pg=PA178&lpg=PA178&dq=aquatic+toxicology

Commonly used species for whole-sediment toxicity testing	Commonly	used	species	for	whole-sediment	toxicity	testing
---	----------	------	---------	-----	----------------	----------	---------

Organism	End point**	Test duration (d)*	Habitat	Feeding habit
Freshwater	a er creve eve	5-049		702
Hyalella azteca (amphipod)"	S, G, R	28	Burrow, epibenthic	Deposit feeder
Diporeia sp. (amphipod) ^b	S	28	Burrow, infaunal	Deposit feeder
Chironomus riparius (midge)*	S, G, E	14	Tube dweller	Suspension and deposit feeder
Chironomus tentans (midge)"	S, G	10	Tube dweller	Suspension and deposit feeder
Hexagenia limbata (mayfly)	S. G. M	10	Tube dweller	Suspension and deposit feeder
Ceriodaphnia dubia (cladoceran)ad	S, R	7	Water column	Suspension feeder
Daphnia magna (cladoceran)	S. G. R	10	Water column	Suspension feeder
Lumbriculus variegatus'	S, G, R	28	Burrow, infaunal/ epibenthic	Deposit feeder
Tubifex tubifex	S	28	Burrow, infaunal/ epibenthic	Deposit feeder
Salt water				
Rhepoxynius abronius (amphipod) ^e	S	10	Burrow, infaunal	Deposit feeder, predator
Eohaustorius estaurius (amphipod) ^e	S	10	Burrow, infaunal	Deposit feeder
Ampelisca abdita (amphipod) ^e	S. G. R.	20	Tube dweller	Suspension and deposit feeder
Grandidierella japonica (amphipod)	S, G	10	Tube dweller	Deposit feeder
Hyalella azteca (amphipod) ^k	S. G. R	28	Burrow, epibenthic	Deposit feeder
Leptocheirus plumulosus (amphipod)'	S. G. R	28	Burrow, infaunal	Deposit feeder
Neanthes sp. (polychaete)	S. G. R	85	Tube dweller	Deposit feeder
Capitella capitata (polychaete)	S, G	35	Tube dweller	Deposit feeder
Nereis virens (polychaete)	S	12	Tube dweller	Deposit feeder

[&]quot;ASTM (1995a); Ingersoll and Nelson (1990).

Taken from: https://books.google.com.tr/books?id=YDqDy4bkW2QC&pg=PA178&lpg=PA178&dq=aquatic+toxicology

^{*}Landrum (1989); Landrum et al. (1989); ASTM (1995a); formerly Pontoporeia hoyi.

^{&#}x27;Nebeker et al. (1984a); ASTM (1995a); Bahnick et al. (1981).

^dBurton et al. (1989); ASTM (1995a).

^{*}Phipps et al. (1992); ASTM (1995a).

Reynoldson et al. (1991); ASTM (1995a).

[&]quot;ASTM (1992), Swartz et al. (1985).

^{*}Nebeker and Miller (1988b); U.S. EPA (1994a).

^{&#}x27;ASTM (1992), Schlekat et al. (1991).

Johns and Ginn (1990), Pesch (1979), ASTM (1994c).

^{*}Chapman and Fink (1984).

^{&#}x27;McLeese et al. (1982); ASTM (1994e).
"S = survival, G = growth, R = reproduction, M = molting frequency, E = adult emergence.

^{*}Maximum duration of tests.

Advantages and limitations of sediment toxicity tests

Advantages

Provide a direct measure of benthic effects.

Limited special equipment is required.

Methods are rapid and inexpensive.

Legal and scientific precedence exist for use; ASTM standards are available.

Tests with spiked chemicals provide data on cause-effect relationships.

Sediment toxicity tests can be applied to all chemicals of concern.

Tests applied to field samples reflect cumulative effects of all contaminants and contaminant interactions.

Toxicity tests are amenable to field validation.

Modified from Swartz R. C.: Marine sediment toxicity tests, with permission from Contaminated Marine Sediments—Assessment and Remediation, copyright 1989 by the National Academy of Sciences. Courtesy of the National Academy Press, Washington, D.C.

Advantages and limitations of sediment toxicity tests

Limitations

Sediment collection, handling, and storage may alter bioavailability.

Spiked sediment may not be representative of field-contaminated sediment.

Natural geochemical characteristics of sediment may affect the response of test organisms.

Indigenous animals may be present in field-collected sediments.

Route of exposure may be uncertain and data generated in sediment toxicity tests may be difficult to interpret if factors controlling the bioavailability of contaminants in sediment are unknown.

Tests applied to field samples cannot discriminate effects of individual chemicals.

Few comparisons have been made of methods or species.

Only a few chronic methods for measuring sublethal effects have been developed or extensively evaluated.

Laboratory tests have inherent limitations in predicting ecological effects.

Tests do not directly address human health effects.

Modified from Swartz R. C.: Marine sediment toxicity tests, with permission from Contaminated Marine Sediments—Assessment and Remediation, copyright 1989 by the National Academy of Sciences. Courtesy of the National Academy Press, Washington, D.C.

Taken from: https://books.google.com.tr/books?id=YDqDy4bkW2QC&pg=PA178&lpg=PA178&dq=aquatic+toxicology