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9.1. Center of Mass

The center of mass of a system of particles is the point that moves as
though (1) all of the system’s mass were concentrated there and (2) all
external forces were applied there.



4+ 9.1. Center of Mass

Center of mass for a systems of particles
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4+ 9.1. Center of Mass

The coordinates of CM for three dimensions
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9.1. Center of Mass

Solid Bodies

For solid bodies, the coordinates of the center of mass are defined as

1 | 1
xCM=Mf'de )’CM=Mfydm ZCM=Mdem
where M is the mass of the object

Uniform objects have uniform density:
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=+ 9.1. Center of Mass

xKM=%fde yKM=—fde ZKM=%deV

/Ax1s of symmetry

Disk Donut

Center of mass

Cube Sphere Cylinder

_ _ If an object has an axis of symmetry, the center
If a homogeneous object has a geometric center, o mass lies along it. As in the case of the donut,

that 1s where the center of mass is located. the center of mass may not be within the object.



=4+ 9.2. Newton’s 2. Law for a System of Particles

The position vector of CM for a system with n particles:

s _ MLttt m g
M

CM ~—

The first derivation of this equation gives:

dr, dr, dr, dr
M =m—L+m,—>+...+m —=
dt dt dt dt

MVCM =my,+n,v, +...+my,

M

and the first derivation of this equation gives:

dv dv dav dv
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dt dt dt dt

May,, =ma, +m,a, +...+m a,

M



=4+ 9.2. Newton’s 2. Law for a System of Particles

Thus, we obtained

Ma,,, =ma, +m,a,+...+ma,

Ma,, =F +F, +..+ I

—

Ma,, =F,,

> F, . is the net force of all external forces that act on the system.
Forces on one part of the system from another part of the system
(internal forces) are not included in this equation

> M is the total mass of the system and M remains constant during the
movement (System is closed)

> acy is the acceleration of the center of mass of the system. This
equation gives no information about the acceleration of any other
point of the system.
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== 9.3. Linear Momentum

From Newton’s third law:

—

E2=_F21:>F12+F21=0

We use the acceleration instead of forces:

ma, + m,a, =0

From the definition of acceleration:

m, al +m, @y _ 0
dt dt
d(myv,) s d(m,v,) _ 0
dt dt

\¢: d(my, + m,v,)

dt

=0




== 9.3. Linear Momentum

For a closed system:

d(mv, + m,v,)
dt

=0 = m,y, + m,v, = constant

The linear momentum of a particle is a vector quantity that is defined as:

p=my

in which m is the mass of the particle and v its velocity vector.

P, =my, py = mvy p,=my,

The Sl unit for momentum is the kilogram-meter per second (kgm/s).



== 9.3. Linear Momentum |.

From the definition of linear momentum we can express the Newton’s second law
as:

EF=mZz=mdv _ d(mv) _ dp
dt dt dt

The time rate of change of the momentum of a particle is equal to the net force
acting on the particle and is in the direction of that force.

If there is a net force acting on a particle, it’'s momentum will change

If the net frce zero on a particle, it’s momentum is constant



=4+ 9.4. Linear Momentum for a System of Particles |.

Consider a system of n particles, each with its own mass, velocity, and linear
momentum. The system as a whole has a total linear momentum P, which is defined
to be the vector sum of the individual particles’ linear momenta:

p=p +p,+..+p,
p=my, +my,+..+my,
ﬁ = M‘_;CM
The linear momentum of a system of particles is equal to the product of the

total
mass M of the system and the velocity of the center of mass.

The first derivation of t%equati%with time: R
cM =

.= = MaCM = Fnet

dt dt
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=+ 9.5. Collision and Impuls

Single Collision
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Thus, in time interval dt, the change in the
ball's momentum is:

dp = F(t)dt

The momentum change during the
collision:



=+ 9.5. Collision and Impuls |.

The momentum change for a given collision time interval is defined as impuls and
shown as J

This equation is known as impuls-momentum theorem.

Impuls is a vector quantity.



=+ 9.5. Collision and Impuls

The impulse in the collision
Is equal to the area under
the curve.

120,
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If thw force is constant, then impuls is given by:

J = tfzﬁ(t)dt

|7 = FAt|




=+ 9.5. Collision and Impuls

2F,

X Large force that acts
for a short time

The area under both curves
1s the same, so both forces
deliver the same impulse.

Smaller force that
acts for a longer time




=+ 9.5. Collision and Impuls

The area under the curve of net force versus
time equals the impulse of the net force:

I

2Fy Area = J, = [ SF.dt

. 1
We can also calculate the
impulse by replacing the
varying net force with an
average net force:
Area = J,
To= (Fa)x(ty — 17)

(F av)x B




=4 9.6. Conservation of Linear Momentum

For a isolated system, the net force, acting on particles of the systems, is zero:

_ap _
EFnet_dt 0

Therefor the momentum of an isolated system is

p = constant

If no net external force acts on a system of particles, the total linear
momentum of the system cannot change

This result is called the law of conservation of linear momentum. It can also be
written as




=<4 9.6. Conservation of Linear Momentum |.

This result is called the law of conservation of linear momentum. It can also be
written as

1_51'=I_5f

In words, this equation says that, for a closed, isolated system, total momentum at
some initial time t; is equal to total momentum at some later time t;

The momentum here are the total momentum of sytems !



=+ 9.6. Conservation of Linear Momentum

Caution: Momentum is a vector quantity.

R Instead, use vector addition:
- PB A system of two —
P
Pa ’ particles with PB
pa = 18 kg - m/s momenta in
pp =24kg-mfs different directions

—g — —

P=p,+pp  <ARIGHT!
You CANNOT find the magnitude of the total
momentum by adding the magnitudes of the
individual momenta! P = |ﬁA - ﬁBl

P=p, +}{42 kg-mfs  4WRONG = 30 kg - m/s at@ = 37°



=+ 9.7. Momentum and Kinetic Energy in Collision

« Elastic Collision:
The total kinetic energy (as well as total momentum) of the system is the same
before and after the collision.

* Inelastic Collision
The total kinetic energy of the system is not the same before and after the collision
(even though the momentum of the system is conserved)

« Completely inelastic Collision
When the colliding objects stick together after the collision, as happens when a
meteorite collides with the Earth, the collision is called perfectly inelastic



== 9.8. Inelastic Collision in One Dimension

Here is the generic setup
for an inelastic collision.

Body 1 Body 2 Since the momentum of system is conserved:
Bef ?lt ;’)21
erore ﬂ ﬂ - _ -
i~ o * P after Pinitial
m, Mgy
Vis v, In one dimension:
After —> —>
Q o) X
m, mey
v V = : :
s 2s mlvls + m2V2S mlvll + m2VZl

But the kinetic energy is not conserved !

KE . =KFE

after intial




== 9.8. Inelastic Collision in One Dimension

Cotel'et inelastic collision

From the conservation of momentum:

Before collision

; Vi :21_@
)

(m, +m,)v, =myv,, +m,v,,

(a
After collision y = mlvli + m2v2i
S
QV— (my +m,)
my + moy s

KE is not conserved !



== 9.8. Inelastic Collision in One Dimension

Cotel'et inelastic collision

In a completely inelastic
collision, the bodies
stick together.
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== 9.8. Inelastic Collision in One Dimension

Comp tel'et inelastic collision

In a completely inelastic
collision, the bodies

stick together. p=Mv,
he
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== 9.8. Inelastic Collision in One Dimension

pletely inelastic collision

In a completely inelastic
collision, the bodies

stick together.
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constant velocity.
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== 9.9. Elastic Collision in One Dimension

Here is the generic setup
for an elastic collision with
a stationary target.

Before V1
—_— 7, =0
Q Q X
my mo
Projectile Target
‘71.9 ‘725
After > >
Q Q X
my my
From the conservation of momentum: From the conservation of KE
_ 1 , 1 , 1 5
2 2 2
From these two equation we can obtain:
m, —m, 2m,
Vip = Vi Vor = Vii
ml + m2 m1 + m2




== 9.9. Elastic Collision in One Dimension

m, —m, 2m,
Vip = Vii Vor = Vii
ml + m2 ml + m2
For Im1 >> m2|
Vip = Vi Vo = 2v,,
For II’I’L2 >> mll
2m
D 1
Vls ~ vli sz = Vli
m,

For 'm,=m,



== 9.9. Elastic Collision in One Dimension

Here is the generic setup
for an elastic collision with
a moving target.

— —

V1i Voi
Q Q—=
my my

From the conservation of KE

1 L, 1 > 1 » 1

From the conservation of momentum:

MV F 1LV S IWV p + 1L Vy e —myvy, + =m0y, = —myvy, +—m, Vs,
2 2 2
m, —m 2m
_M -, 2
Vig vt Vo,
m, +m, m, +m,
2m, m, —m,
Vor = vt Vo,
m, +m, m, +m,




== 9.10. Collision in Two Dimensions |.
A glancing collision ,

that conserves The conservatio of momentum in vector
both momentum and "V form:

kinetic energy. - - - -
/ Dii T D2i = Dif T Py
0,
= < g If the collison is elactic, then
my Vi 1

Kli +K2i =K1f +K2f

The conservation of momentum in x-direction:

mv,, =mv, cosf, +m,v, cosb,

The conservation of momentum in y-direction:

0=-my, sm6, +m,v, sinb,



