ELE 321 Linear System Analysis
 Ankara University
 Faculty of Engineering
 Electrical and Electronics Engineering Department

Periodic Signals

ELE321 Linear System Analysis
Lecture 3

Agenda

- Periodic signals
- Even and odd signals
- Complex exponentials
- Sinusoidal signals

Periodic Signals

- Continuous-time Periodic Signal: $x(t)=x(t+T), T$: Period

Periodic Signal Examples

Periodic Signal Examples

- Periodic Signals
- Discrete-time Periodic Signal: $x[n]=x[n+N], N:$ Period

Even and Odd Signals

- A continuous-time signal is even if $x(-t)=x(t)$
- A continuous-time signal is odd if $x(-t)=-x(t)$

Even and Odd Signals

- A discrete-time signal is even if $x[-n]=x[n]$
- A discrete-time signal is odd if $x[-n]=-x[n]$

Continuous time

- Even part of signal $x(t)$

$$
E v\{x(t)\}=\frac{1}{2}\{x(t)+x(-t)\}
$$

- Odd part of signal $x(t)$

$$
O d\{x(t)\}=\frac{1}{2}\{x(t)-x(-t)\}
$$

Discrete time

- Even part of signal $x[n]$

$$
E v\{x[n]\}=\frac{1}{2}\{x[n]+x[-n]\}
$$

- Odd part of signal $x[n]$
$\operatorname{Od}\{x[n]\}=\frac{1}{2}\{x[n]-x[-n]\}$

Continuous-Time Complex Exponential and Sinusoidal Signals
 Continuous-Time Complex Exponential Signals

$$
x(t)=C e^{a t}
$$

where C and a are complex numbers in general.

- Real exponential signal: If C and a are real, $x(t)$ is called real exponential signal.

- Periodic Complex Exponential and Sinusoidal Signals

Consider $x(t)=e^{j \omega_{o} t}$ (a is purely imaginary)
$x(t)$ is periodic, where ω_{0} is frequency in radian per second (rad/s)

$$
\left.\omega_{o}=\frac{2 \pi}{T_{o}} \text { (} T_{o} \text { is fundamental period }\right)
$$

Since $x(t)$ is periodic, $e^{j \omega_{o} t}=e^{j \omega_{o}(t+T)}$
Therefore, $e^{j \omega_{o} t}=e^{j \omega_{o} t} e^{j \omega_{o} T}$
For periodicity, $e^{j \omega_{o} T}=1$
In fact, $e^{j \omega_{o} T}=\cos \left(\omega_{o} T\right)+j \sin \left(\omega_{o} T\right)$ (Euler's Relation)
When $\omega_{o}=0$, then $x(t)=1$, which is periodic for any value of T. When $\omega_{o} \neq 0$, the fundamental period T_{o} (smallest positive value of T) of $x(t)$ is $T_{o}=\frac{2 \pi}{\left|\omega_{o}\right|}$.

- Sinusoidal signal is closely related to periodic complex exponential:

$$
x(t)=A \cos \left(\omega_{o} t+\varphi\right)
$$

- By using Euler's Relation periodic complex exponential can be written in terms of periodic sinusoidals:

$$
e^{j \omega_{o} t}=\cos \left(\omega_{o} t\right)+j \sin \left(\omega_{o} t\right)
$$

- Similarly, sinusoidal signal can be written in terms of periodic complex exponentials:

$$
A \cos \left(\omega_{o} t+\varphi\right)=\frac{A}{2} e^{j \varphi} e^{j \omega_{o} t}+\frac{A}{2} e^{-j \varphi} e^{-j \omega_{o} t}
$$

- Therefore cosine can be expressed as

$$
A \cos \left(\omega_{o} t+\varphi\right)=A R e\left\{e^{j\left(\omega_{o} t+\varphi\right)}\right\}
$$

and sine will be

$$
A \sin \left(\omega_{o} t+\varphi\right)=A \operatorname{Im}\left\{e^{\left.j\left(\omega_{o} t+\varphi\right)\right\}}\right\}
$$

References

- Signals and Systems, 2nd Edition, Oppenheim, Willsky, Nawab

