ELE 321 Linear System Analysis
 Ankara University
 Faculty of Engineering
 Electrical and Electronics Engineering Department

Linear Time Invariant Systems

ELE321 Linear System Analysis
Lecture 7

Agenda

- LTI systems
- Properties of LTI systems
- Impulse response
- Convolution Summation
- Convolution Integral

Linear Time-Invariant (LTI) Systems

Discrete-Time LTI Systems

Discrete-Time Input Signal in Terms of Unit Impulses:

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

Discrete-Time Output Signal in Terms of Unit Impulse Responses:

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] h_{k}[n]
$$

where $h_{k}[n]$ is the response of the linear system to the shifted impulse $\delta[n-k]$.

If $h[n]$ is the output of the LTI system, then the output is

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Equivalently

$$
y[n]=x[n] * h[n]
$$

where * is convolution operator.

Therefore output is determined using convolutional summation.

Continuous-Time LTI Systems

Continuous-Time Input Signal in Terms of Unit Impulses:

$$
x(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau
$$

Continuous-Time Output Signal in Terms of Unit Impulse Responses (Convolutional Integral):

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

Equivalently,

$$
y(t)=x(t) * h(t)
$$

where * is convolution operator.

Properties of LTI Systems

- Commutative Property

$$
\begin{aligned}
& x[n] * h[n]=h[n] * x[n] \\
& x(t) * h(t)=h(t) * x(t)
\end{aligned}
$$

- Distributive Property

$$
\begin{aligned}
& x[n] *\left(h_{1}[n]+h_{2}[n]\right)=x[n] * h_{1}[n]+x[n] * h_{2}[n] \\
& x(t) *\left(h_{1}(t)+h_{2}(t)\right)=x(t) * h_{1}(t)+x(t) * h_{2}(t)
\end{aligned}
$$

- LTI Systems with and without Memory
- Associative Property

$$
\begin{aligned}
& x[n] *\left(h_{1}[n] * h_{2}[n]\right)=\left(x[n] * h_{1}[n]\right) * h_{2}[n] \\
& x(t) *\left(h_{1}(t) * h_{2}(t)\right)=\left(x(t) * h_{1}(t)\right) * h_{2}(t)
\end{aligned}
$$

- Invertibility

$$
\begin{aligned}
& h[n] * h_{1}[n]=\delta[n] \\
& h(t) * h_{1}(t)=\delta(t)
\end{aligned}
$$

- Causality

$$
\begin{aligned}
& y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k] \\
& y(t)=\int_{0}^{\infty} h(\tau) x(t-\tau) d \tau
\end{aligned}
$$

- Stability

$$
\begin{aligned}
& \sum_{k=-\infty}^{\infty}|h[k]|<\infty \\
& \int_{-\infty}^{\infty}|h(\tau)|<\infty
\end{aligned}
$$

Linear Constant-Coefficient Difference Equations

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

References

- Signals and Systems, 2nd Edition, Oppenheim, Willsky, Nawab

