ELE 321 Linear System Analysis
 Ankara University
 Faculty of Engineering
 Electrical and Electronics Engineering Department

The Continuous-Time Fourier Transform

ELE321 Linear System Analysis

Lecture 11

Agenda

- Continuous-Time Fourier Transform for Aperiodic Signals
- Convergence of Fourier Transform
- Continuous-Time Fourier Transform for Periodic Signals

CT Fourier Transform for Aperiodic Signals

- $x(t)$ is an aperiodic signal
- $x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega$
- $X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$

Convergence of CT Fourier Transform

- Dirichlet conditions must be satisfied.
- Aperiodic signal must be absolutely integrable.
- Number of the maxima and minimas of the aperiodic signal must be finite.
- Number of the discontinuities of the aperiodic signal must be finite.

CT Fourier Transform for Periodic Signals

- Fourier series coefficients, a_{k}
- $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}:$ periodic signal
- $X(j \omega)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right)$
- Train of impulses

Linearity

$\cdot x(t) \longleftrightarrow X(j \omega)$ and $y(t) \longleftrightarrow Y(j \omega)$

- $a x(t)+b y(t) \longleftrightarrow a X(j \omega)+b Y(j \omega)$

Time Shifting

- $x(t) \longleftrightarrow X(j \omega)$
$\cdot x\left(t-t_{0}\right) \longleftrightarrow e^{-j \omega t_{0}} X(j \omega)$

Conjugation and Conjugate Symmetry

- $x(t) \longleftrightarrow X(j \omega)$
- $x^{*}(t) \longleftrightarrow X^{*}(-j \omega)$

Differentiation

- $x(t) \longleftrightarrow X(j \omega)$
- $\frac{d x(t)}{d t} \longleftrightarrow j \omega X(j \omega)$

Parseval's Relation

- $\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(j \omega)|^{2} d \omega$

Convolution Property

- $y(t)=h(t) * x(t) \longleftrightarrow Y(j \omega)=H(j \omega) X(j \omega)$
- Time domain: convolution
- Frequency domain: multiplication

Multiplication (Modulation) Property

$\cdot r(t)=s(t) p(t) \longleftrightarrow R(j \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S(j \theta) P(j(\omega-\theta)) d \theta$

- Time domain: multiplication (amplitude modulation)
- Frequency domain: convolution

Systems Characterized by Linear Constant Coefficient Differential Equations

- $Y(j \omega)=H(j \omega) X(j \omega)$
- $H(j \omega)=\frac{\sum_{k=0}^{M} b_{k}(j \omega)^{k}}{\sum_{k=0}^{N} a_{k}(j \omega)^{k}}$

References

- Signals and Systems, 2nd Edition, Oppenheim, Willsky, Nawab

