EEE 321
 Signals and Systems

Ankara University
Faculty of Engineering
Electrical and Electronics Engineering Department

Properties of Discrete-Time Fourier Transform

EEE321 Signals and Systems
Lecture 13

Agenda

- Properties of Discrete Time Fourier Transform
- Systems Characterized By Linear Constant-Coefficient Difference Equations

Periodicity

- $X\left(e^{j \omega}\right)=X\left(e^{j(\omega+2 \pi)}\right)$
- Periodic in ω with period 2π

Linearity

$\cdot x[n] \longleftrightarrow X\left(e^{j \omega}\right)$ and $y[n] \longleftrightarrow Y\left(e^{j \omega}\right)$
$\cdot a x[n]+b y[n] \longleftrightarrow a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$

Time Shifting and Frequency Shifting

- $x[n] \longleftrightarrow X\left(e^{j \omega}\right)$
$\cdot x\left[n-n_{0}\right] \longleftrightarrow e^{-j \omega n_{0}} X\left(e^{j \omega}\right)$
$\cdot e^{j \omega_{0} n} x[n] \longleftrightarrow X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$

Conjugation and Conjugate Symmetry

- $x[n] \longleftrightarrow X\left(e^{j \omega}\right)$
$\cdot x^{*}[n] \longleftrightarrow X^{*}\left(e^{-j \omega}\right)$

Differencing

$\cdot x[n] \longleftrightarrow X\left(e^{j \omega}\right)$
$\cdot x[n]-x[n-1] \longleftrightarrow\left(1-e^{-j \omega}\right) X\left(e^{j \omega}\right)$

Parseval's Relation

- $\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|X\left(e^{j \omega}\right)\right|^{2}$

Convolution Property

- $y[n]=h[n] * x[n] \longleftrightarrow Y\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) X\left(e^{j \omega}\right)$
- Time domain: convolution
- Frequency domain: multiplication

Multiplication Property

- $r[n]=s[n] p[n] \longleftrightarrow R\left(e^{j \omega}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} S\left(e^{j \theta}\right) P\left(e^{j(\omega-\theta)}\right) d \theta$
- Time domain: multiplication
- Frequency domain: periodic convolution

Systems Characterized by Linear Constant Coefficient Difference Equations

- $Y\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) X\left(e^{j \omega}\right)$
- $H\left(e^{j \omega}\right)=\frac{\sum_{k=0}^{M} b_{k} e^{-j k \omega}}{\sum_{k=0}^{N} a_{k} e^{-j k \omega}}$

References

- Signals and Systems, 2nd Edition, Oppenheim, Willsky, Nawab

