Physics 122: Electricity &
Magnetism — Lecture 1

Prof. Dr. Baris Akaoglu



Vector Basics

We will be using vectors a lot in this Ways of writing vector notation
course. F=ma

Remember that vectors have both
magnitude and direction e.g. a. €

You should know how to find the
components of a vector from its
magnitude and direction

a, =acosé
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You should know how to find a vector’s

magnitude and direction from its

components a=.la’ H’;ﬁ

-1
& = tan ﬂyx’ax



Projection of a Vector and Vector
Components

When we want a component of a
vector along a particular
direction, it is useful to think of it
as a projection.

The projection always has length
a cos 8, where a is the length of
the vector and @ is the angle
between the vector and the
direction along which you want
the component.

You should know how to write a
vector in unit vector notation

a=aji+a,j or a=(a.a,)
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Projection of a Vector in Three
Dimensions

Any vector in three dimensions

can be projected onto the x-»
plane.

The vector projection then
makes an angle ¢ from the x
axis.

Now project the vector onto
the - axis, along the direction
of the earlier projection.

The original vector a makes an
angle @from the - axis.




Vector Basics

You should know how to generalize the
case of a 2-d vector to three dimensions,
e.g. 1 magnitude and 2 directions a. 8. ¢

Conversion to x, y, z components
a.=asm &cosg

a, =asm @sm ¢

a.=acose
Conversion from x, y, Z components
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Unit vector notation:
a=a,+a,j+ak



Seeing in 3 Dimensions

Which of these show the
proper projection of the
vector onto the z axis?

I.

II.

I1I.

IV.

None of the above.




A Note About Right-Hand
Coordinate Systems

A three-dimensional coordinate

system MUST obey the right-hand
rule.

Curl the fingers of your RIGHT
HAND so they go from x to v.
Your thumb will point in the =
direction.




Right Handed Coordinate Systems

Which of these coordinate

systems obey the right-hand
rule?

I I
I and IL. // //
IT and IIL. ! -

I, II, and III.
[ and IV.

IV only. Z o ,————;:/___ -




Vector Math

Vector Inverse _ ~
Just switch direction / — A

Vector Addition . _

Use head-tail method, or
parallelogram method B

Vector Subtraction
Use inverse, then add

Vector Multiplication

Two kinds! N
Scalar, or dot product Vector Addition by Components

Vector, or cross product A+B=(4,+B,)i +(4,+B,)j+(4, +B )k



Projection of a Vector: Dot Product

The dot product says
something about how parallel
two vectors are.

The dot product (scalar
product) of two vectors can be
thought of as the projection of
one onto the direction of the
other.

A-B= ABcosé

A-i=Acos@= A
Components

A-B=AB +AB, +AB. | _ T




Projection of a Vector: Dot Product

The dot product says
something about how parallel
two vectors are.

The dot product (scalar
product) of two vectors can be
thought of as the projection of

one onto the direction of the a
other. B Projection is zero

%-;?ZABCDSE RRR

A-i =Acosf = A, ~_ .

/2 | a

Components | |

A-B=AB_+AB,+AB. A~ "

—
-
,-""---f




Derivation

How do we show that 4-B=_A4B. +AB,+AB ?
Start with 4= 4f+4 j+ Ak
B=Bi+B,j+B.k

Then 4.B=(4,i+4,j+A4Kk)-(Bi+B,j+BFk)
= Ai-(Bi+B,j+Bk)+Aj-(Bi+B,j+Bk)+Ak-(Bi+B,j+Bk)



Cross Product

The cross product of two Recall angular momentum
vectors says something about L=Fxp
how perpendicular they are. Torque

You will find it in the context

_ _ F=FxF
of rotation, or twist.
|Jix,§\ — ABsin 6

Bsin 6
Direction perpendicular to both
A and B (right-hand rule) 4xB=—-Bx 2

Components (messy)
Asin 8

AxB= i
% =(A4,B.—AB))i +(AB,—AB.)j+(4B,—AB)k




Derivation

How do we show th at AxB= (A4,B. —4By)f+(43x —AB)j +(4,B, —A4 B )k ?
Start with 4= 47+ 4 j+Ak

B=Bj+B,j+Bk
Then 4xB=(4i+4,j+Ak)x(Bi+B,j+B.k)

=Aix(Bi+B,j+ B.k)+ A jx(Bi+B,j+ B.k)+ A kx (B, + B,j+B.k)

But ;. i-r:
ixi=0

So AxB=AixB,j+AixBk+Aj-Bi+Aj-Bk

+AII{-BII +Azk-By_,r



Scalar Fields

A scalar field is just one where a quantity
in "space” is represented by numbers,
such as this temperature map.

Here is another scalar field,
height of a mountain.

Contours far

O /alpart

Contours close \Contours

together
flatter
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B %

Side View



Gradients and Gravity

71 Height contours 7, are proportional to potential energy U = mgh. If you move
along a contour, your height does not change, so your potential energy does

not change.
0 If you move downhill, on say a 6% grade, it means the slope is 6/100 (for
every 100 m of horizontal motion, you move downward by 6 m).

_|- ] k. = - E ——_

BT A T e 2 Grade and gradient mean the same
thing. A 6% grade is a gradient of

hm AL/ Ax=dh/dx=-0.06

Ay —(

F=—dU/!dl=—d mgh/dl =—mgdh/dl

F = mg smé@
lt




Vector Fields

A vector field is one where a quantity in
“space” is represented by both
magnitude and direction, i.e by vectors.

The vector field bears a close relationship
to the contours (lines of constant
potential energy).

The steeper the gradient, the larger the
vectors.

The vectors point along the direction of
steepest descent, which is also
perpendicular to the lines of constant
potential energy.

Imagine rain on the mountain. The

vectors are also "streamlines.” Water

running down the mountain will follow

these streamlines. Side View



Surface vs. Volume Vector Fields

In the example of the mountain, note
that these force vectors are only correct
when the object is ON the surface.

The actual force field anywhere other
than the surface is everywhere

downward (toward the center of the
Earth.

The surface creates a "normal force”

everywhere normal (perpendicular) to
the surface. l l l l l l l l

The vector sum of these two forces is
what we are showing on the contour
plot.

Side View



Vector Field Due to Gravity

When you consider the l
force of Earth’s gravity in
space, it points \ \ / /
everywhere in the
direction of the center of
the Earth. But remember \ \. / r
that the strength is:
— —— ilfp—

GMm .
=

F=-—
2
r

This is an example of an
inverse-square force
(proportional to the
inverse square of the
distance).




Gravitational Field

We can therefore think of the
“action-at-a-distance” of gravity
as a field that permeates all of

space. ‘

We draw "“field lines” that show . ’ ‘ /

both the direction and strength of \ \ L"‘"}"‘/
Site

the field (from the density of field

lines). - 4TS
The field cannot be seen or "' ;’d“’\

touched, and has no effect until '

you consider a second mass.

What happens if we have two
equal masses? Superposition—
just vector sum the two fields.




Gravitational Field of Two
Equal Masses

Again, think of adding a small
test mass.

The force vectors show the
direction and strength of the
force on such a test mass.

We can draw field lines that
follow the force vectors.

We will be using these same concepts when
we talk about electric charge in Lecture 2, and
the electric field in Lecture 3.



