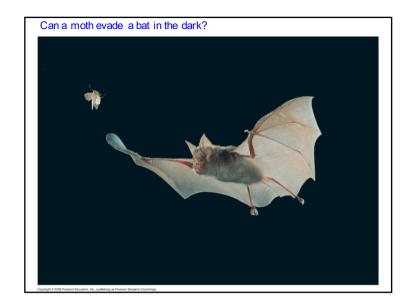
Overview: Sensing and Acting


- Bats use sonar to detect their prey.
- Moths, a common prey for bats, can detect the bat's sonar and attempt to flee.
- Both organisms have complex sensory systems that facilitate survival.
- These systems include diverse mechanisms that sense stimuli and generate appropriate movement.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Sensory receptors transduce stimulus energy and transmit signals to the CNS, central nervous system

- All stimuli represent forms of energy.
- Sensation involves converting energy into a change in the membrane potential of sensory receptors.
- Sensations are *action potentials* that reach the brain via sensory neurons.
- The brain interprets sensations, giving the perception of stimuli.

Copyright © 2008 Pears on Education, Inc., publishing as Pears on Benjamin Cummings

Sensory Pathways

- Functions of sensory pathways: sensory reception, transduction, transmission, and integration.
- For example, stimulation of a stretch receptor in a crayfish is the first step in a sensory pathway.

Sensory Reception and Transduction

- Sensations and perceptions begin with sensory reception, detection of stimuli by sensory receptors.
- Sensory receptors can detect stimuli outside and inside the body.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Transmission

- After energy has been transduced into a receptor potential, some sensory cells generate the transmission of action potentials to the CNS.
- Sensory cells without axons release neurotransmitters at synapses with sensory neurons.
- Larger receptor potentials generate more rapid action potentials.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- Sensory transduction is the conversion of stimulus energy into a change in the membrane potential of a sensory receptor.
- This change in membrane potential is called a receptor potential.
- Many sensory receptors are very sensitive: they are able to detect the smallest physical unit of stimulus.
 - For example, most light receptors can detect a photon of light.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

- **Integration** of sensory information begins when information is received.
- Some receptor potentials are integrated through summation.

Perception

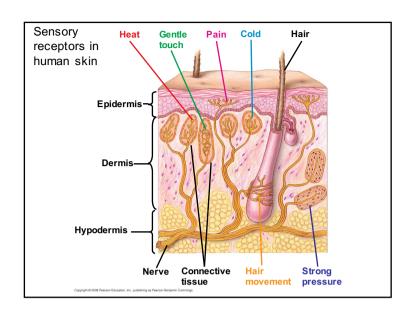
- Perceptions are the brain's construction of stimuli.
- Stimuli from different sensory receptors travel as action potentials along different neural pathways.
- The brain distinguishes stimuli from different receptors by the area in the brain where the action potentials arrive.

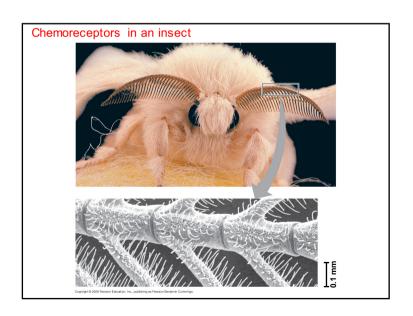
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Types of Sensory Receptors

- Based on energy transduced, sensory receptors fall into five categories:
 - Mechanoreceptors
 - Chemoreceptors
 - Electromagnetic receptors
 - Thermoreceptors
 - Pain receptors

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings


Amplification and Adaptation


- Amplification is the strengthening of stimulus energy by cells in sensory pathways.
- Sensory adaptation is a decrease in responsiveness to continued stimulation.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Mechanoreceptors

- Mechanoreceptors sense physical deformation caused by stimuli such as pressure, stretch, motion, and sound.
- The sense of touch in mammals relies on mechanoreceptors that are dendrites of sensory neurons.

Chemoreceptors

- General chemoreceptors transmit information about the total solute concentration of a solution.
- Specific chemoreceptors respond to individual kinds of molecules.
- When a stimulus molecule binds to a chemoreceptor, the chemoreceptor becomes more or less permeable to ions.
- The antennae of the male silkworm moth have very sensitive specific chemoreceptors.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Electromagnetic Receptors

- Electromagnetic receptors detect electromagnetic energy such as light, electricity, and magnetism. Photoreceptors are electromagnetic receptors that detect light.
- Some snakes have very sensitive infrared receptors that detect body heat of prey against a colder background.
- Many mammals, such as whales, appear to use Earth's magnetic field lines to orient themselves as they migrate.

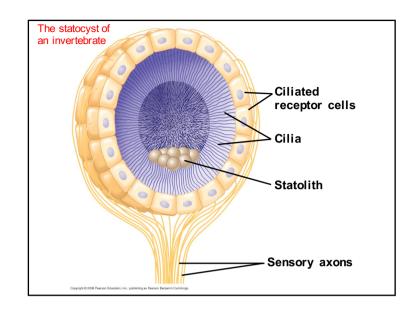
(a) Rattlesnake - infrared receptors detect body heat of prev

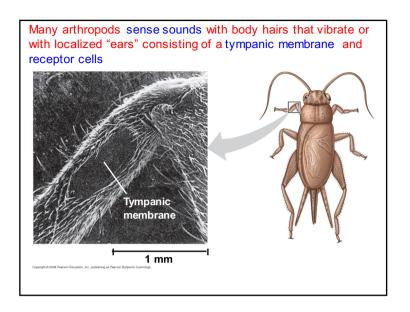
(b) Beluga whales sense Earth's magnetic field – as they navigate migrations.

The mechanoreceptors responsible for hearing and equilibrium detect moving fluid or settling particles

- Hearing and perception of body equilibrium are related in most animals.
- Settling particles or moving fluid are detected by mechanoreceptors.

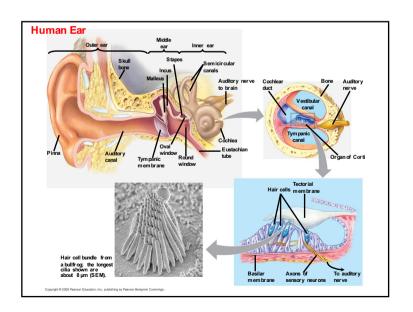
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings


Thermoreceptors & Pain Receptors

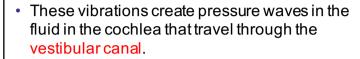

- Thermoreceptors, which respond to heat or cold, help regulate body temperature by signaling both surface and body core temperature.
- In humans, pain receptors, or nociceptors, are a class of naked dendrites in the epidermis.
- They respond to excess heat, pressure, or chemicals released from damaged or inflamed tissues.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

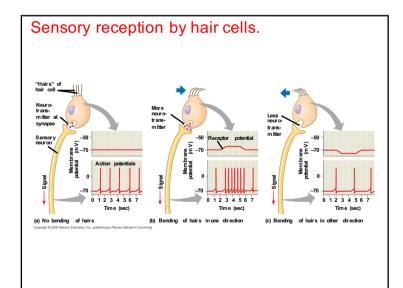
Sensing Gravity and Sound in Invertebrates


- Most invertebrates maintain equilibrium using sensory organs called **statocysts**.
- Statocysts contain mechanoreceptors that detect the movement of granules called statoliths.

Hearing and Equilibrium in Mammals


 In most terrestrial vertebrates, sensory organs for hearing and equilibrium are closely associated in the ear.

Hearing

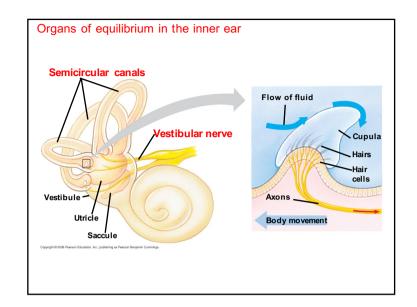

- Vibrating objects create percussion waves in the air that cause the tympanic membrane to vibrate.
- **Hearing** is the perception of sound in the brain from the vibration of air waves.
- The three bones of the middle ear transmit the vibrations of moving air to the oval window on the cochlea.

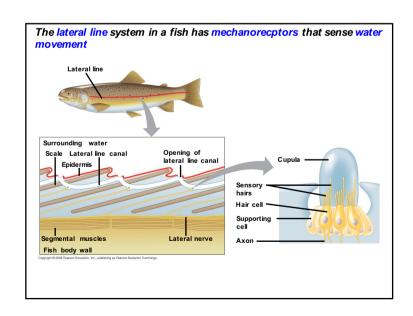
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- Pressure waves in the canal cause the basilar membrane to vibrate, bending its hair cells.
- This bending of hair cells depolarizes the membranes of mechanoreceptors and sends action potentials to the brain via the auditory nerve.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- The ear conveys information about sound waves:
- Volume = amplitude of the sound wave
- Pitch = frequency of the sound wave
- The cochlea can distinguish pitch because the basilar membrane is not uniform along its length.
- Each region vibrates most vigorously at a particular frequency and leads to excitation of a specific auditory area of the cerebral cortex.


Equilibrium


- Several organs of the inner ear detect body position and balance:
 - The utricle and saccule contain granules called otoliths that allow us to detect gravity and linear movement.
 - Three semicircular canals contain fluid and allow us to detect angular acceleration such as the turning of the head.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

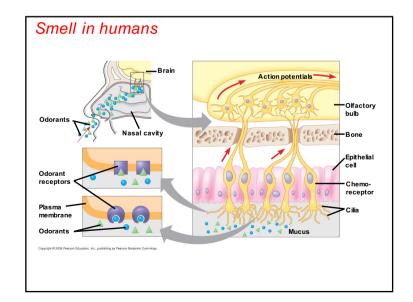
Hearing and Equilibrium in Other Vertebrates

- Unlike mammals, fishes have only a pair of inner ears near the brain.
- Most fishes and aquatic amphibians also have a lateral line system along both sides of their body.
- The lateral line system contains mechanoreceptors with hair cells that detect and respond to water movement.

The senses of taste and smell rely on similar sets of sensory receptors

- In terrestrial animals:
 - Gustation (taste) is dependent on the detection of chemicals called tastants
 - Olfaction (smell) is dependent on the detection of odorant molecules
- In aquatic animals there is no distinction between taste and smell.
- Taste receptors of insects are in sensory hairs called sensilla, located on feet and in mouth parts.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

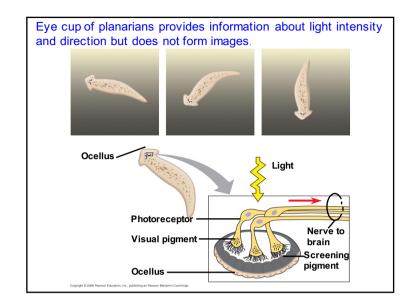

Smell in Humans

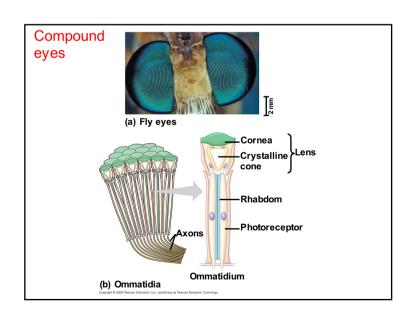
- Olfactory receptor cells are neurons that line the upper portion of the nasal cavity.
- Binding of odorant molecules to receptors triggers a signal transduction pathway, sending action potentials to the brain.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Taste in Mammals

- In humans, receptor cells for taste are modified epithelial cells organized into taste buds.
- There are five taste perceptions: sweet, sour, salty, bitter, and umami (elicited by glutamate).
- Each type of taste can be detected in any region of the tongue.
- When a taste receptor is stimulated, the signal is transduced to a sensory neuron. Each taste cell has only one type of receptor.

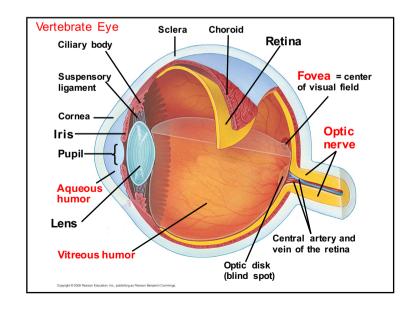


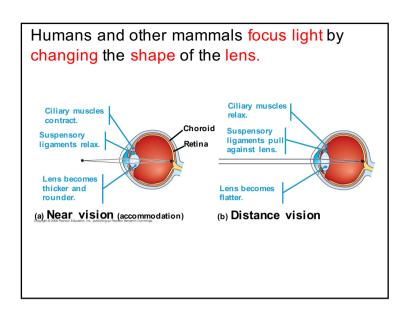

Similar mechanisms underlie vision throughout the animal kingdom

- Many types of light detectors have evolved in the animal kingdom.
- Most invertebrates have a light-detecting organ.
- One of the simplest is the eye cup of planarians, which provides information about light intensity and direction but does not form images.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- Two major types of image-forming eyes have evolved in invertebrates: the compound eye and the single-lens eye.
- Compound eyes are found in insects and crustaceans and consist of up to several thousand light detectors called ommatidia.
- Compound eyes are very effective at detecting movement.

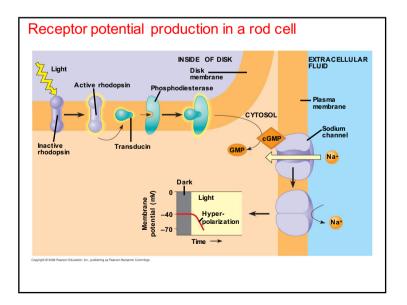

- Single-lens eyes are found in some jellies, polychaetes, spiders, and many molluscs.
- They work on a camera-like principle: the iris changes the diameter of the pupil to control how much light enters.
- In vertebrates the eye detects color and light, but the brain assembles the information and perceives the image.


- The eye is divided into two cavities separated by the lens and ciliary body:
 - The anterior cavity is filled with watery aqueous humor
 - The posterior cavity is filled with jellylike vitreous humor
- The ciliary body produces the aqueous humor.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Structure of the Eye

- Main parts of the vertebrate eye:
 - The sclera: white outer layer, including cornea
 - The choroid: pigmented layer
 - The iris: regulates the size of the pupil
 - The retina: contains photoreceptors
 - The lens: focuses light on the retina
 - The optic disk: a blind spot in the retina where the optic nerve attaches to the eye.

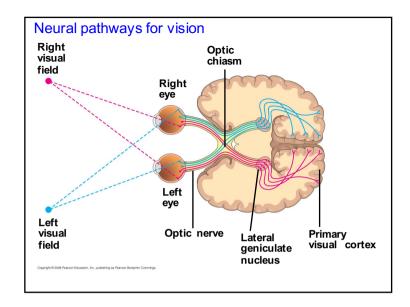


- The human retina contains two types of photoreceptors: rods and cones
- Rods are light-sensitive but don't distinguish colors.
- Cones distinguish colors but are not as sensitive to light.
- In humans, cones are concentrated in the fovea, the center of the visual field, and rods are more concentrated around the periphery of the retina.

Sensory Transduction in the Eye

- Each rod or cone contains visual pigments consisting of a light-absorbing molecule called retinal bonded to a protein called an opsin.
- Rods contain the pigment rhodopsin (retinal combined with a specific opsin), which changes shape when absorbing light.
- Once light activates rhodopsin, cyclic GMP breaks down, and Na+ channels close.
- This hyperpolarizes the cell.

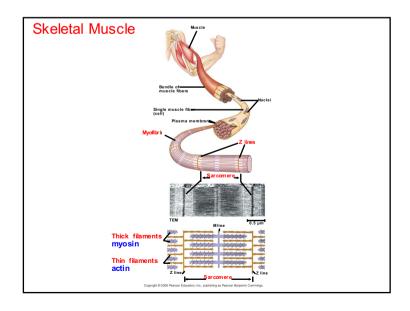
Processing of Visual Information


- In humans, three pigments called photopsins detect light of different wave lengths: red, green, or blue.
- Processing of visual information begins in the retina.
- Absorption of light by retinal triggers a signal transduction pathway.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The physical interaction of protein filaments is required for muscle function

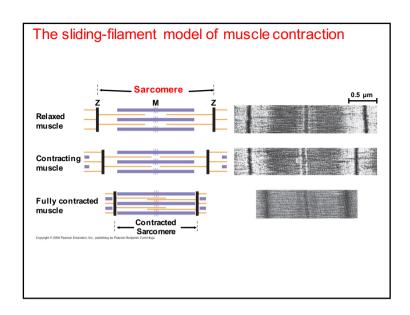
- Muscle activity is a response to input from the nervous system.
- The action of a muscle is always to contract.

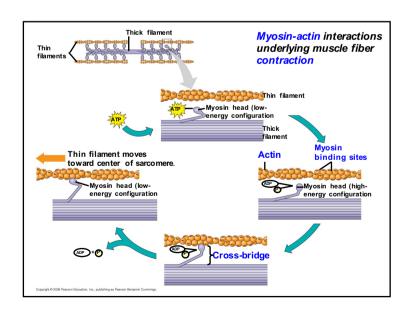

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Vertebrate Skeletal Muscle

- Vertebrate skeletal muscle is characterized by a hierarchy of smaller and smaller units.
- A skeletal muscle consists of a bundle of long fibers, each a single cell, running parallel to the length of the muscle.
- Each muscle fiber is itself a bundle of smaller myofibrils arranged longitudinally.

- The myofibrils are composed to two kinds of myofilaments:
 - Thin filaments consist of two strands of actin and one strand of regulatory protein
 - Thick filaments are staggered arrays of myosin molecules

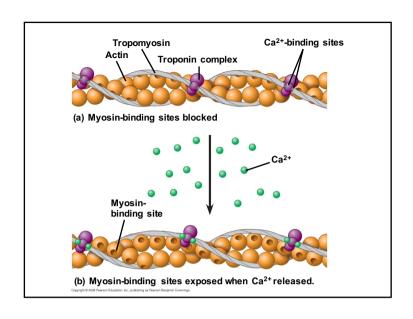


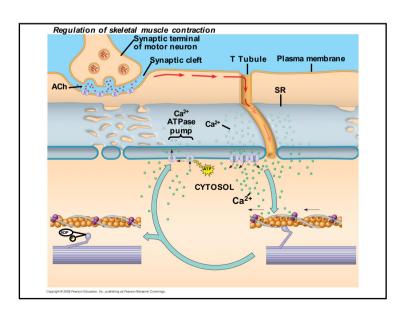

- Skeletal muscle is also called striated muscle because the regular arrangement of myofilaments creates a pattern of light and dark bands.
- The functional unit of a muscle is called a sarcomere, and is bordered by Zlines.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Sliding-Filament Model of Muscle Contraction

 According to the sliding-filament model, filaments slide past each other longitudinally, producing more overlap between thin and thick filaments.

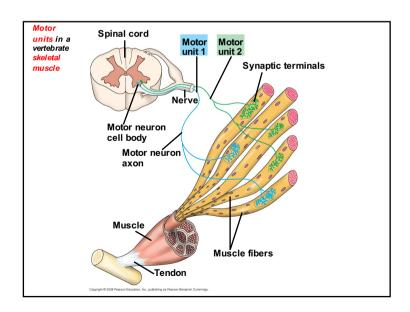




- The sliding of filaments is based on interaction between actin of the thin filaments and myosin of the thick filaments.
- The "head" of a myosin molecule binds to an actin filament, forming a cross-bridge and pulling the thin filament toward the center of the sarcomere.
- Glycolysis and aerobic respiration generate the ATP needed to sustain muscle contraction.

The Role of Calcium and Regulatory Proteins

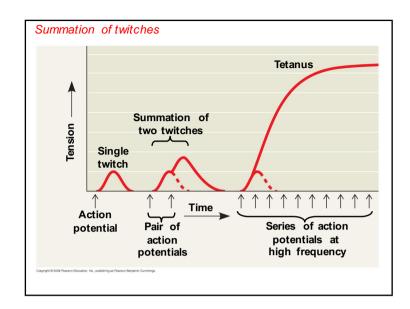
- A skeletal muscle fiber contracts only when stimulated by a motor neuron.
- When a muscle is at rest, myosin-binding sites on the thin filament are blocked by the regulatory protein tropomyosin.
- Myosin-binding sites exposed when Ca²⁺ released.


- The synaptic terminal of the motor neuron releases the *neurotransmitter acetylcholine*.
- Acetylcholine *depolarizes* the *muscle*, causing it to produce an *action potential*.

- Action potentials travel to the interior of the muscle fiber along transverse (T) tubules.
- The action potential along T tubules causes the sarcoplasmic reticulum (SR) to release Ca²⁺
- The Ca²⁺ binds to the troponin complex on the thin filaments.
- This binding exposes myosin-binding sites and allows the cross-bridge cycle to proceed.

Nervous Control of Muscle Tension

- Contraction of a whole muscle is graded, which means that the extent and strength of its contraction can be voluntarily altered.
- There are two basic mechanisms by which the nervous system produces graded contractions:
 - Varying the number of fibers that contract
 - Varying the rate at which fibers are stimulated.


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- In a vertebrate skeletal muscle, each branched muscle fiber is innervated by one motor neuron.
- Each motor neuron may synapse with multiple muscle fibers.
- A **motor unit** consists of a single motor neuron and all the muscle fibers it controls.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- **Recruitment** of multiple motor neurons results in stronger contractions.
- A twitch results from a single action potential in a motor neuron.
- More rapidly delivered action potentials produce a graded contraction by summation.
- Tetanus is a state of smooth and sustained contraction produced when motor neurons deliver a volley of action potentials.

Other Types of Muscle

- In addition to skeletal muscle, vertebrates have cardiac muscle and smooth muscle.
- Cardiac muscle, found only in the heart, consists of striated cells electrically connected by intercalated disks.
- Cardiac muscle can generate action potentials without neural input.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

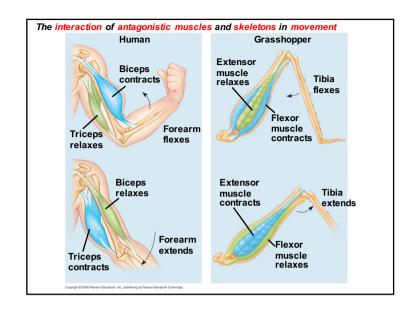
Fast-Twitch and Slow-Twitch Fibers

- Slow-twitch fibers contract more slowly, but sustain longer contractions. All slow twitch fibers are oxidative.
- Fast-twitch fibers contract more rapidly, but sustain shorter contractions. Fast-twitch fibers can be either glycolytic or oxidative.
- Most skeletal muscles contain both slow-twitch and fast-twitch muscles in varying ratios.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

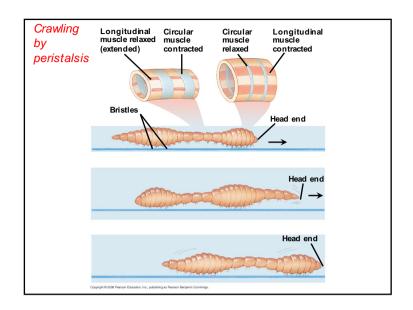
- In smooth muscle, found mainly in walls of hollow organs, contractions are relatively slow and may be initiated by the muscles themselves.
- Contractions may also be caused by stimulation from neurons in the autonomic nervous system.

Skeletal systems transform muscle contraction into locomotion


- Skeletal muscles are attached in antagonistic pairs, with each member of the pair working against the other
- The skeleton provides a rigid structure to which muscles attach.
- Skeletons function in support, protection, and movement.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

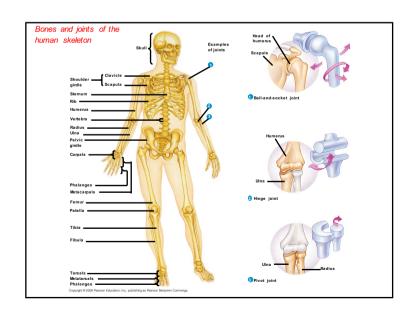
Types of Skeletal Systems


- The three main types of skeletons are:
 - Hydrostatic skeletons (lack hard parts)
 - Exoskeletons (external hard parts)
 - Endoskeletons (internal hard parts)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Hydrostatic Skeletons

- A hydrostatic skeleton consists of fluid held under pressure in a closed body compartment
- This is the main type of skeleton in most cnidarians, flatworms, nematodes, and annelids.
- Annelids use their hydrostatic skeleton for peristalsis, a type of movement on land produced by rhythmic waves of muscle contractions.


Endoskeletons

- An endoskeleton consists of hard supporting elements, such as bones, buried in soft tissue
- Endoskeletons are found in sponges, echinoderms, and chordates.
- A mammalian skeleton has more than 200 bones.
- Some bones are fused; others are connected at joints by ligaments that allow freedom of movement.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Exoskeletons

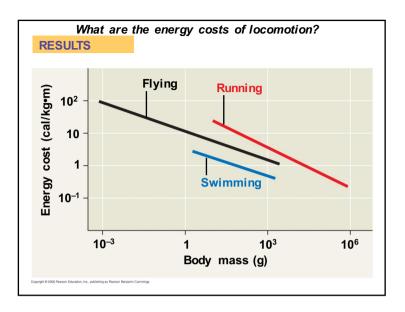
- An exoskeleton is a hard encasement deposited on the surface of an animal.
- Exoskeletons are found in most molluscs and arthropods.
- Arthropod exoskeletons are made of cuticle and can be both strong and flexible.
- The polysaccharide **chitin** is often found in arthropod cuticle.

Types of Locomotion

- Most animals are capable of locomotion, or active travel from place to place.
- In locomotion, energy is expended to overcome friction and gravity.
- In water, friction is a bigger problem than gravity. Fast swimmers usually have a streamlined shape to minimize friction.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Energy-efficient locomotion on land


Locomotion on Land

- Walking, running, hopping, or crawling on land requires an animal to support itself and move against gravity.
- Diverse adaptations for locomotion on land have evolved in vertebrates

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Flying

- Flight requires that wings develop enough lift to overcome the downward force of gravity.
- Many flying animals have adaptations that reduce body mass.
 - For example, birds lack teeth and a urinary bladder

- 3. Explain the role of mechanoreceptors in hearing and balance.
- 4. Give the function of each structure using a diagram of the human ear.
- 5. Explain the sliding-filament model of muscle contraction.
- 6. Explain how a skeleton combines with an antagonistic muscle arrangement to provide a mechanism for movement.

You should now be able to:

- 1. Distinguish between the following pairs of terms: sensation and perception; sensory transduction and receptor potential; tastants and odorants; rod and cone cells; oxidative and glycolytic muscle fibers; slow-twitch and fast-twitch muscle fibers; endoskeleton and exoskeleton.
- 2. List the five categories of sensory receptors and explain the energy transduced by each type.