Optoelectronics-I

Assoc. Prof. Dr. Isa NAVRUZ Lecture Notes - 2018

Recommended books

Department of Electrical and Electronics Enginnering, Ankara University Golbasi, ANKARA

Objectives

When you finish this lesson you will be able to:

- ✓ Define some properties of light: Speed, Frequency, Refractive index, Wavelength, Energy
- ✓ Describe the dual nature of light
- ✓ Describe the ray optics
- ✓ Describe the postulates of ray optics
 Describe the optical path length and Fermat"s Principles
- ✓ Describe Light Propagation in Homogeneous Medium
- \checkmark Define the reflection and refraction
- ✓ Define the Snell"s Law

What is light?

This question has been discussed for many centuries.

- The sun radiates light, and the light bulbs illuminate the darkness. Many other uses of light impact our lives daily.
- ✓ The first experiments conducted on the light showed that it propagates like a straight line.
 So the *ray optics* came out.

The speed of light in a vacuum is expressed as $c = 2.99 \times 10^8$ m/s.

What is light?

- ✓ The light travels in a vacuum at a constant speed of about 300.000 km\s. However its speed changes in non-vacuum media. For example, its speed slower 0.03% in the air and about 30% in the glass than in the vacuum media.
- ✓ The speed of light in any medium is closely related to the refractive index of that medium.

Refractive index for various material

Media	Index of Refraction
Vacuum	1.00
Air	1.0003
Carbon dioxide gas	1.0005
Ice	1.31
Pure water	1.33
Ethyl alcohol	1.36
Quartz	1.46
Vegetable oil	1.47
Olive oil	1.48
Acrylic	1.49
Table salt	1.51
Glass	1.52
Diamond	2.42
Gallium phosphide	3.50

Exercise:

- 1. The speed of light a material is 2.5 x 10⁸ m/s. Find the refractive index of materials.
- 2. The refractive index of crown glass is 1.4. Find the speed of light in crown glass.
- Find the speed of light in a water of refractive index 4/3.

What is light?

wavelength

✓ Another important parameter of light is its wavelength.

- ✓ The wavelength behaviour of light will be examined in the next section. For now, it is enough to know that the wavelength is a characteristic feature of light.
- ✓ The wavelength in the visible spectrum allows us to see the colors of the light.

Color	Wavelength
violet	380–450 nm
blue	450–495 nm
green	495–570 nm
yellow	570–590 nm
orange	590–620 nm
red	620–750 nm

What is light?

Wavelength & frequency

If the wavelength of light increases in a homogeneous medium, its frequency decreases.

Dual nature of light

Energy

- ✓ The light carries energy while traveling and this energy is an measurable optical characteristic.
- Scientists have observed that light energy can behave like a wave as it moves through space, or it can behave like a discrete particle with a discrete amount of energy (quantum) that can be absorbed and emitted.

Concept of a photon

- ✓ The particle-like nature of light is modeled with photons.
- \checkmark A photon has no mass and no charge.
- ✓ Photons can interact with other discrete particles (e.g., electrons, atoms, and molecules).

Dual nature of light

Energy

Photon energy
$$(E) = hc/\lambda = hv$$

where E is in joules

 $h = \text{Planck's constant} = 6.625 \ 10^{-34} \text{ J} \cdot \text{s}$

c = Speed of light = 2.998×10^8 m/s for free space or vacuum

 λ = Wavelength of the light in meters

Exercise:

Blue light have a wavelength of 500 nm. What is the energy of photons in this light.

Ray Optics

- When light waves propagate through and around objects whose dimensions are much greater than the wavelength, the behaviour of light can be adequately described by rays obeying a set of geometrical rules. This model of light is called ray optics.
- ✓ Ray optics is the simplest theory of light. Light is described by rays that travel in different optical media in accordance with a set of geometrical rules.
- ✓ Ray optics is therefore also called geometrical optics.
- The ray optics cannot fully explain the behaviour of optical light, but it can adequately describe many phenomena such as reflection, refraction, focusing of light.

Postulates of Ray Optics

There is a set of postulates related to the simple rules of light rays that traveling through optical media.

- ✓ The light travels in the form of rays. The rays are emitted by the light sources and they reach an optical detector.
- ✓ The time taken by light to travel a distance d equals to d/c=nd / c₀. The term of nd is known as optical path length.
 Here, c and c₀ are the speeds of the light in the medium and free space, respectively.
- ✓ In an inhomogenous medium, if the refractive index n(r) is a function of the position r(x,y,z)

Postulates of Ray Optics

✓ Fermat's principles:

Optical rays traveling between two points, A and B, follow path such that the time of travel between the two points is an extremum relative to neighbor paths.

Light Propagation in Homogeneous Medium

- ✓ In a homogeneous medium the refractive index is the same everywhere
- The path of minimum distance between two points is a straight line so that in a homogeneous medium light travel in straight lines

Shadows are evidence of the light travelling in the straight lines.

Light Propagation in Homogeneous Medium

Reflection from the surface of a curved mirror.

The plane of incidence is the plane formed by the incident ray and the normal to the mirror at the point of incidence.

Reflection from the mirror

- ✓ The reflected ray lies in the plane of incidence.
- ✓ The angle of reflection equals the angle of incidence.

Light Propagation in Homogeneous Medium

Reflection and refraction at the boundary between two media

The refracted ray lies in the plane of incidence; the angle of refraction θ_2 is related to the angle of incidence θ_1 by Snell's law,

At the boundary between two media of refractive indices n1 and n2, an incident ray is split into two-a reflected ray and a refracted (or transmitted) ray.

$$n_1\sin\theta_1=n_2\sin\theta_2.$$

- (a) Lower to higher: bending toward normal
- (b) Higher to lower: bending away from normal

Exercise:

In a handheld optical instrument used under water, light is incident from water onto the plane surface of flint glass at an angle of incidence of 45°. (the index of refraction is 1.33 for water and 1.63 for flint glass)

- (a) What is the angle of reflection of light off the flint glass?
- (b) Does the refracted ray bend toward or away from the normal?
- (c) What is the angle of refraction in the flint glass?

Critical angle and total internal reflection

Critical angle and total internal reflection

For internal refraction (n1>n2), the angle of refraction is greater than the angle of Incidence (θ 2> θ 1), so that as θ 1 increases, θ 2 reaches 90. This occurs when θ 1= θ c (the critical angle)

$$n_1 \sin \theta_c = n_2$$

$$\theta_c = \sin^{-1} \frac{n_2}{n_1}.$$