Optoelectronics-I

Chapter-6

Assoc. Prof. Dr. Isa NAVRUZ
Lecture Notes - 2018

Recommended books

Department of Electrical and Electronics Enginnering, Ankara University

Golbasi, ANKARA

Polarization Optics

Objectives

When you finish this lesson you will be able to:
\checkmark Describe the Polarization
\checkmark Define polarization types
\checkmark Explain the linear, circular and elliptical polarizations
\checkmark Define the mathematical description of polarizations
\checkmark Explain the matrix representation with the Jones Vector
\checkmark Define the orthogonal polarizations

Polarization

The meaning of the Polarization

Polarization is a fundamental property of light . The polarization of the wave is the description of the behaviour of the vector E in the plane x, y, perpendicular to the direction of propagation z.

The plane of polarization is defined as the plane containing the propagation vector, i.e. the z axis, and the electric field vector.

Consider a plane wave traveling z direction. The electric field lies in the $x-y$ plane. If the direction of E changes randomly with time, the wave is said to be randomly polarized, or unpolarized.

Polarization

The meaning of the Polarization

Polarization is controlled by the electric field direction in the $x-y$ plane of the light traveling in z direction.

There are three different types of polarization.

1-Linear Polarization

a

2-Circular Polarization

b

3-Elliptical Polarization

C

Note that it is not mandatory for the wave to travel only in z direction. The wave (Electric field) can propagate in any r direction. However, we chose the light traveling in $+z$ direction for to be easily understood.

Polarization

Linear Polarization

The electric field of light is confined to a single plane along the direction of propagation. All the electric field vectors oscillate in the same plane. They parallel to a fixed direction referred to as the polarization direction.

Direction of the electric field vector=direction of polarization

polarization direction

Polarization

Linear Polarization

Exercise:

Suppose that an electric field propagating in the positive z direction and linearly polarized in the x direction. Calculate the magnetic filed vector \vec{H} and pointing vector \vec{S}.

$$
\begin{gathered}
\vec{E}=E_{0} \sin (k z-\omega t) \hat{x} \quad \text { or } \quad \vec{E}=E_{0} \sin (k z-\omega t) \hat{i} \\
\vec{\nabla} \times \overrightarrow{\boldsymbol{E}}=\left|\begin{array}{ccc}
\hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_{x} & 0 & 0
\end{array}\right|=\hat{\boldsymbol{i}}(0-0)-\hat{\boldsymbol{j}}\left(0-\frac{\partial}{\partial z} E_{x}\right)+\hat{\boldsymbol{k}}\left(0-\frac{\partial}{\partial y} E_{x}\right) \\
\vec{\nabla} \times \overrightarrow{\boldsymbol{E}}=\hat{\boldsymbol{j}}\left(\frac{\partial E_{x}}{\partial z}\right)=\hat{\boldsymbol{j}}\left[k E_{o x} \cos (k z-\omega t+\phi)\right] \\
\overrightarrow{\boldsymbol{H}}=-\frac{1}{\mu_{o}} \int\left[k E_{o} \cos (k z-\omega t+\phi) \hat{j}\right] d t=\frac{k}{\omega}\left(\frac{E_{o}}{\mu_{o}}\right) \sin (k z-\omega t+\phi) \hat{j}
\end{gathered}
$$

Polarization

Linear Polarization

Remember that $c=\frac{\omega}{k}=\frac{1}{\left(\varepsilon_{o} \mu_{o}\right)^{1 / 2}}$

$$
\overrightarrow{\boldsymbol{H}}=\left(\frac{\varepsilon_{o}}{\mu_{o}}\right)^{1 / 2} E_{o} \sin (k z-\omega t+\phi) \hat{j}=H_{o} \sin (k z-\omega t+\phi) \hat{j}
$$

$H_{o} \equiv\left(\varepsilon_{o} / \mu_{o}\right)^{1 / 2} E_{o}$

$$
\frac{\left|\vec{E}_{o}\right|}{\left|\vec{H}_{o}\right|}=\left(\frac{\mu_{o}}{\varepsilon_{o}}\right)^{1 / 2} \equiv \eta_{o}
$$

Free space impedance $\longrightarrow \eta_{o}=\left(\frac{\mu_{o}}{\varepsilon_{o}}\right)^{1 / 2} \cong 120 \pi \cong 377 \Omega$
$\overrightarrow{\boldsymbol{S}}=\overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{H}} \Rightarrow \overrightarrow{\boldsymbol{S}}=\left|\overrightarrow{\boldsymbol{E}}_{o} \times \overrightarrow{\boldsymbol{H}}_{o}\right| \hat{k} \quad|\overrightarrow{\boldsymbol{S}}|=\frac{|\overrightarrow{\boldsymbol{E}}|^{2}}{\eta_{o}}=\sqrt{\frac{\varepsilon_{o}}{\mu_{o}}}|\overrightarrow{\boldsymbol{E}}|^{2}=c \varepsilon_{o}|\overrightarrow{\boldsymbol{E}}|^{2}$

$$
\vec{S}=\varepsilon_{0} c E_{0}^{2} \sin ^{2}(k z-\omega t) \hat{z}
$$

Polarization

The Mathematical description of Polarization

Assume that an EM wave propagating along z direction shown in the figure.
The electric field of this wave at the origin of the axis system can be defined as,

$$
\vec{E}=E_{x} \hat{x}+E_{y} \hat{y}
$$

The complex amplitude vectors,

The real amplitude vector of electric field

$$
\begin{aligned}
& \vec{E}=E_{o x} \cos \left(k z-\omega t+\varphi_{x}\right) \hat{x}+E_{o y} \cos \left(k z-\omega t+\varphi_{y}\right) \hat{y} \\
& \quad \vec{E}=E_{o x} \cos (k z-\omega t) \hat{x}+E_{o y} \cos (k z-\omega t \pm \delta) \hat{y} \quad \delta \equiv \varphi_{y}-\varphi_{x}
\end{aligned}
$$

Polarization

The Mathematical description of Polarization

$$
\vec{E}=E_{o x} \cos (k z-\omega t) \hat{x}+E_{o y} \cos (k z-\omega t \pm \delta) \hat{y} \quad \delta \equiv \varphi_{y}-\varphi_{x}
$$

When amplitudes and phase differences are compared,

Polarization

Exercise:

The frequency of a plane electromagnetic wave is $600 \times 10^{12} \mathrm{~Hz}$. It is propagating along positive x direction in vacuum and has an electric field amplitude of $43.42 \mathrm{~V} / \mathrm{m}$ The wave is linearly polarized such that the oscillation plane is at 45° to the $x-z$ plane. Obtain the vector \vec{E} and \vec{H}.

Polarization

Polarization

Matrix Representation with the Jones Vector

A monochromatic plane wave traveling in the z direction is completely characterized by the complex envelopes given below,

$$
\begin{gathered}
\vec{E}=\hat{i} E_{o x}+\hat{j} E_{o y} \\
E_{o x}=\left.\left|E_{o x}\right|\right|^{i \varphi_{x}} \quad E_{o y}=\left|E_{o y}\right| e^{i \varphi_{y}}
\end{gathered}
$$

This monochromatic plane wave can be expressed in matrix form.

$$
\vec{E}=\left[\begin{array}{l}
E_{o x} \\
E_{o y}
\end{array}\right]=\left[\begin{array}{l}
\left|E_{o x}\right| e^{i \varphi_{x}} \\
\left|E_{o y}\right| e^{i \varphi_{y}}
\end{array}\right]
$$

The form of column matrix known as Jones vector. we can determine the total intensity of the wave,

$$
I=\left(\left|E_{o x}\right|^{2}+\left|E_{o y}\right|^{2}\right) / 2 \eta
$$

Where, η is the impedance of the medium.

Polarization

Matrix Representation with the Jones Vector

Linearly polarized light in x direction

$$
\vec{E}=\left[\begin{array}{c}
E_{o} \\
0
\end{array}\right]=E_{o}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Linearly polarized light in y direction

$$
\vec{E}=\left[\begin{array}{c}
0 \\
E_{o}
\end{array}\right]=E_{o}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Linearly polarized wave, plane of polarization making angle θ with x axis

$$
\vec{E}=E_{o}\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]
$$

For example, the Jones vector for linearly polarized wave with $\theta=45^{\circ}$

$$
\vec{E}=\left[\begin{array}{l}
E_{o} \\
E_{o}
\end{array}\right]=\frac{E_{o}}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Polarization

Matrix Representation with the Jones Vector

Elliptical Polarization
Left handed

$$
\vec{E}=\frac{E_{o}}{\sqrt{5}}\left[\begin{array}{c}
1 \\
2 i
\end{array}\right]
$$

Elliptical Polarization
Right handed

$$
\begin{aligned}
& E_{\text {ox }}=2 E_{\text {oy }}=2 E_{o} \\
& \delta=-\pi / 2
\end{aligned}
$$

$$
\vec{E}=\frac{E_{o}}{\sqrt{5}}\left[\begin{array}{c}
2 \\
-i
\end{array}\right]
$$

Polarization

Orthogonal Polarizations

Suppose that two polarization states represented by the Jones vectors J_{1} and J_{2}. If the inner product between J_{1} and J_{2} is zero, this state is called as orthogonal.

The inner product is defined as,

$$
\left(\mathbf{J}_{1}, \mathbf{J}_{2}\right)=A_{1 x} A_{2 x}^{*}+A_{1 y} A_{2 y}^{*} \quad \mathbf{J}=\left[\begin{array}{l}
A_{x} \\
A_{y}
\end{array}\right]
$$

Here, the symbol (*) represents the complex conjugate.

Polarization

Exercise:

Show that the linearly polarized wave with plane of polarization making an angle θ with the x axis is equivalent to a superposition of right and left circularly polarized waves with weights $(1 / \sqrt{2}) e^{-j \theta}$ and $(1 / \sqrt{2}) e^{j \theta}$, respectively.

Solution:

Right circularly polarized waves have a Jones vector given by $\quad J_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ i\end{array}\right]$ And left circularly polarized waves have $J_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -i\end{array}\right]$
The weight α_{1} attached to $\mathrm{J}_{1} \quad \alpha_{1}=\frac{1}{\sqrt{2}}\left(e^{-i \theta}\right)$
The weight α_{2} attached to $J_{2} \quad \alpha_{2}=\frac{1}{\sqrt{2}}\left(e^{i \theta}\right) \quad \square J=\alpha_{1} J_{1}+\alpha_{2} J_{2}$

$$
\begin{aligned}
J=\frac{1}{2}\binom{e^{-i \theta}}{i e^{i e^{-i \theta}}}+\frac{1}{2}\binom{e^{i \theta}}{-i e^{i \theta}} \Longrightarrow \quad J=\frac{1}{2}\binom{e^{-i \theta}+e^{i \theta}}{i e^{-i \theta}-i e^{i \theta}} \\
J=\binom{\cos \theta}{\sin \theta} \quad \begin{array}{c}
\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \\
\text { Remember that } \\
\cos \theta=\frac{e^{-i \theta}+e^{i \theta}}{2}
\end{array}
\end{aligned}
$$

Polarization

The Jones Matrix Representation of Polarization Devices

Optical system

Consider the transmission of a plane wave of arbitrary polarization through an optical system. The optical system can alter the polarization of a plane wave as shown in the figure.

The relationship between the polarization states at the input and output of the system can be defined by a matrix as follows.

$$
\left[\begin{array}{l}
A_{2 x} \\
A_{2 y}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]}_{\boldsymbol{T}}\left[\begin{array}{l}
A_{1 x} \\
A_{1 y}
\end{array}\right] \quad \begin{aligned}
& T \text { is the Jones Matrix of the } \\
& \text { optical system }
\end{aligned}
$$

If the input and output waves are described by the Jones vectors J_{1} and J_{2}, we can write the equation as follows

$$
J_{2}=T J_{1}
$$

Polarization

The Jones Matrix Representation of Polarization Devices

Linear Polarizer along x Direction

$$
\mathbf{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

| Wave-Retarder
 (Fast Axis along
 x Direction) |
| ---: |\(\quad \mathbf{T}=\left[\begin{array}{cc}1 \& 0

0 \& \exp (-j \Gamma)\end{array}\right]\)

Rotation the plane of polarization of a linearly polarized wave by an angle θ

$$
\begin{array}{r}
\mathbf{T}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
\text { Polarization Rotator }
\end{array}
$$

The Linear Polarizer

$$
\pi / 2 \text { wave retarder (quarter wave) }
$$

π wave retarder (half wave)

Polarization

The Jones Matrix Representation of Cascaded Systems

$$
\left[\begin{array}{l}
A^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]
$$

Polarization

The Jones Matrix Representation of Polarization Devices

Linear Polarizer along x Direction $\mathbf{T}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]$	$\underset{\text { along y Direction }}{\text { Linear Polarizer }} \quad \mathbf{T}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
Quarter-wave retarder Axis x is the fast axis of the retarder. $\mathbf{T}=\left[\begin{array}{ll} 1 & 0 \\ 0 & i \end{array}\right]$	Quarter-wave retarder $\begin{aligned} & \text { Axis } y \text { is the slow axis of } \\ & \text { the retarder. }\end{aligned} \mathbf{T}=\left[\begin{array}{cc}1 & 0 \\ 0 & -i\end{array}\right]$
Circular Polarizer Left handed$\quad \mathbf{T}=\frac{1}{2}\left[\begin{array}{cc}1 & -i \\ i & 1\end{array}\right]$	$\underset{\text { Right handed }}{\text { Circular Polarizer }}$ Rig $\quad \mathbf{T}=\frac{1}{2}\left[\begin{array}{cc}1 & i \\ -i & 1\end{array}\right]$

Exercise:

Show that the Jones matrix of a polarizer making an angle $\theta=45^{\circ}$ with the x axis is equivalent to

$$
\mathbf{T}=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

