Optoelectronics-I

Chapter-8

Assoc. Prof. Dr. Isa NAVRUZ
Lecture Notes - 2018

Recommended books

Optoelectronics Anintroduction
Second edition

Department of Electrical and Electronics Enginnering, Ankara University

Golbasi, ANKARA

Refraction \& Reflection-2

Objectives

When you finish this lesson you will be able to:
\checkmark Describe the Fresnel Equations
\checkmark Define Total Internal Reflection
\checkmark Explain the Fresnel coefficients in the Internal Reflection
\checkmark Explain the Fresnel coefficients in the External Reflection
\checkmark Describe the Brewster Angle

Fresnel Equations

Reflection coefficient for s polarization

$$
r_{s}=\frac{E_{r}}{E_{i}}=\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}
$$

Transmission coefficient for s polarization

$$
t_{s}=\frac{E_{t}}{E_{i}}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}
$$

For the parallel polarization case, using similar methods, the result are
Reflection coefficient for p polarization

$$
r_{p}=\frac{E_{r}}{E_{i}}=\frac{n_{t} \cos \theta_{i}-n_{i} \cos \theta_{t}}{n_{t} \cos \theta_{i}+n_{i} \cos \theta_{t}}
$$

Transmission coefficient for p polarization

$$
t_{p}=\frac{E_{t}}{E_{i}}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{t}+n_{t} \cos \theta_{i}}
$$

Fresnel Equations

Using Snell's law, we can re-write:

$$
\begin{aligned}
& r_{s}=r_{\perp}=-\frac{\sin \left(\theta_{i}-\theta_{t}\right)}{\sin \left(\theta_{i}+\theta_{t}\right)} \\
& r_{p}=r_{\|}=+\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)} \\
& t_{s}=t_{\perp}=+\frac{2 \sin \theta_{t} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right)} \\
& t_{p}=t_{\|}=+\frac{2 \sin \theta_{t} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right) \cos \left(\theta_{i}-\theta_{t}\right)}
\end{aligned}
$$

Fresnel Equations

Reflectance (R) and Transmittance (T)

$$
\begin{gathered}
R=|r|^{2} \\
T=\frac{n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}}|t|^{2}
\end{gathered}
$$

Total Internal Reflection

When $n_{i}>n_{t}$, the transmitted angle is bigger than incidence angle. In this case, if $\theta t=90^{\circ}$, then the incidence angle is called the critical angle

$$
\sin \left(\theta_{c}\right)=\frac{n_{t}}{n_{i}}
$$

If $\theta i>\theta c$, Total Internal Reflection (TIR) occurs and an evanescent wave propagates along the boundary (i.e. high loss electric field propagating along the surface).

Fresnel Equations

Internal Reflection (n1>n2)

This is case of traveling the light from a more dense medium into a less dense one

$$
n_{i}>n_{t} \quad \Longrightarrow \theta_{t}>\theta_{i}
$$

How much of the light is reflected ?
How much of the light is transmitted?
How about the phase of reflected and transmitted light?
Now let's calculate the reflection and transmission coefficients in both the s and p polarizations.

Fresnel Equations

$n_{i}=1.5 \quad n_{t}=1$ (air)

Matlab Code

clear;
clc;
tetai=0:0.01:89.99;
n1=1.5;
n2=1;
tetac=asind(n2/n1);
tetat=asind(n1*sind(0:0.01:tetac)/n2);
plot(0:0.01:tetac,tetat);
L=length(tetat);
L2=length(tetai);
tetat(L+1:1:L2)=90;
rs=(n1* $\cos d\left(\right.$ tetai) $-n 2^{*} \operatorname{cosd}($ tetat $\left.)\right) . /\left(n 1^{*} \operatorname{cosd}\left(\right.\right.$ tetai) $+n 2^{*} \operatorname{cosd}($ tetat $\left.)\right) ;$ figure;
plot(tetai,rs);
hold on
$r p=\left(n 2^{*} \operatorname{cosd}\left(\right.\right.$ tetai) $-n 1^{*} \operatorname{cosd}($ tetat $\left.)\right) . /\left(n 1^{*} \operatorname{cosd}(\right.$ tetat $)+n 2^{*} \operatorname{cosd}($ tetai)); plot(tetai,rp);
ylim([-1-1]);

Fresnel Equations

External Reflection (n1<n2)

$$
n_{i}=1(\text { air }) n_{t}=1.5
$$

If r is real and $r>0$ then there are no phase changes after reflection.

If $r<0$ then there are $\pi\left(180^{\circ}\right)$ phase changes after reflection.

For s polarization, π phase shift for all incident angles

For "p" case, $\begin{aligned} & \pi \text { phase shift for } \boldsymbol{\theta}<\theta_{B} \\ & \text { No phase shift for } \boldsymbol{\theta}>\boldsymbol{\theta}_{B}\end{aligned}$

Fresnel Equations

Brewster's Angle $\left(\theta_{\mathrm{B}}\right)$:
Note that r_{p} is zero at a certain angle. This angle only occurs when the p-polarized (TM mode) light is reflected in both the internal and external reflection cases.

Brewster's angle equals to 56.3° for $n_{i}=1$ and $n_{t}=1.5$ values.

$$
\begin{gathered}
r_{p}=r_{\|}=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)}=0 \\
\theta_{\mathrm{i}}+\theta_{\mathrm{t}}=\frac{\pi}{2} \\
n_{\mathrm{i}} \sin \theta_{\mathrm{i}}=n_{\mathrm{t}} \sin \left(\frac{\pi}{2}-\theta_{\mathrm{i}}\right)=n_{\mathrm{t}} \cos \theta_{\mathrm{i}}
\end{gathered}
$$

$$
n_{i}=1(\text { air }) n_{t}=1.5
$$

Brewter's angle is the angle that satisfies this equation,

$$
\theta_{\mathrm{B}}=\tan ^{-1} \frac{n_{\mathrm{t}}}{n_{\mathrm{i}}}
$$

Fresnel Equations

Brewster's Angle $\left(\theta_{\mathrm{B}}\right)$:

Example:

Show that polarizing (Brewter's) angles for internal and external reflection between the same two media must be complementary of $\pi / 2$

Fresnel Equations

Example:

For an air-glass interface ($n_{i}=1$ and $n_{t}=1.5$), suppose that the incident light is perpendicularly (S) polarized Light. When $\theta_{i}=0$,
a) Calculate the reflection and transmission coefficients (r, t)
b) Calculate the reflectance (R) and Transmittance (T)
c) Explain the phase change of reflected light and transmitted light.

Fresnel Equations

Example:

Show analytically that $R_{p}+T_{p}=1$, where R_{p} and T_{p} is given by

$$
r_{p}=\frac{E_{r}}{E_{i}}=\frac{n_{t} \cos \theta_{i}-n_{i} \cos \theta_{t}}{n_{t} \cos \theta_{i}+n_{i} \cos \theta_{t}}
$$

$$
t_{p}=\frac{E_{t}}{E_{i}}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{t}+n_{t} \cos \theta_{i}}
$$

Fresnel Equations

Example:

a)Consider three dielectric media with flat and parallel boundaries with refractive indices n1, n2, and n3. Show that for normal incidence the reflection coefficient between layers 1 and 2 is the same as that between layers 2 and 3 if $n 2=n 1 n 3$. What is the significance of this?
b)Consider a Si photodiode that is designed for operation at 900 nm . Given a choice of two possible antireflection coatings, SiO 2 with a refractive index of 1.5 and TiO 2 with a refractive index of 2.3 which would you use and what would be the thickness of the antireflection coating you chose? The refractive index of Si is 3.5 .

Fresnel Equations

Example:

Consider that light propagates at normal incidence from air, $\mathrm{n}_{1}=1$, to semiconductor likes a photocell with a refractive index of $n_{3}=3.5$ as given in Fig-a

Fig-(a)

Fig-(b)
a) What is the reflection coefficient (r) and the reflectance (R) with respect to the incident beam?
b) When the semiconductor material is coated with thin layer of electric material such as $\mathrm{Si}_{3} \mathrm{~N}_{4}$ (silicon nitride) that has an intermediate refractive index of $\mathrm{n}_{2}=1.9$ as given in Fig-(b), the loss can be reduced. In this case, calculate the reflection coefficient (r) and the reflectance (R) and discuss the loss.
c) In this system, how can you explain the phase matching relation to thickness of antireflective layer?

Fresnel Equations

Example:

A ray of light which is traveling in a glass medium of refractive index $n 1=1.450$ becomes incident on a less dense glass medium of refractive index $n 2=1.430$. Suppose that the free space wavelength (λ) of the light ray is $1 \mu \mathrm{~m}$. a.
a)What should be the minimum incidence angle for TIR?
b) What is the phase change in the reflected wave when $\theta i=85^{\circ}$ and when $\theta i=90^{\circ}$? .

