SUSTAINED RELEASE DRUG DELIVERY SYSTEMS

Doç.Dr. Burcu DEVRİM

#### USP classifies the dosage forms in two groups:

- 1) Conventional dosage forms
- 2) Modified release dosage forms

**Modified Release Dosage Forms** 

- 1) Delayed Release Dosage Forms
- 2) Extended Release Dosage Forms

a) Controlled Release Dosage Forms

**b) Sustained Release Dosage Forms** 

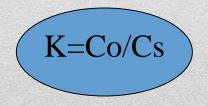
#### Differences Between Sustained and Controlled Release Dosage Forms

| Sustained Release Dosage Forms                                                                                 | Controlled Release Dosage<br>Forms                                                                   |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| They provide medication over<br>extended period of time.                                                       | They provide constant drug<br>levels in blood / tissue.                                              |
| They generally do not attain zero<br>order release kinetics.                                                   | They maintain constant drug<br>levels in the blood by releasing<br>the drug in a zero order pattern. |
| In general, they do not contain<br>mechanisms to promote<br>localization of the drug at the<br>site of action. | They provide localization of the drug at the site of action.                                         |

## **Factors Affecting the Design of SRDFs**

| <b>Biological Factors</b> | Physicochemical Properties |
|---------------------------|----------------------------|
| Absorption                | Dose size                  |
| Distrubition              | Partition coefficient      |
| Metabolization            | Molecular size             |
| Biological half life      | Aqueous solubility and pKa |
| Adverse effects           | Drug stability             |
| Terapeutic index          | Binding to proteins        |
| Role of the disease       |                            |

#### **Physicochemical Properties**


1) Aqueous Solubility&pKa (Ionization Constant):

#### **Aqueous Solubility:**

- Before absorption, API must be dissolved in the aqueous phase surrounding the site of administration.
- Water-soluble APIs, especially if pH independent, serve as a good candidates for SRDFs.
- ka < kr Conventional tablet</li>
  ka >>kr Sustained effective tablet

#### 2) Partition Coefficient:

- Between the time an API is administrated and is eliminated from the body, it must diffuse through a variety of biological membranes.
- Since the membranes are in lipid structure, the oil/water partition coefficient (K) has an important role in evaluating the API penetration.



Co=Equilibrium concentration in oily phase Cs=Equilibrium concentration in aqueous phase

# 3) Stability of API:

- APIs undergo slower degradation in the solid form than in the liquid form such as solution or suspension.
- APIs that stable in stomach are released in stomach and are unstable when they are released in intestine.
- APIs with stability problems in any particular area of GIT are less suitable for the preparation of SRDFs.
- APIs may be protected from enzymatic degradation by incorporation into a polymeric matrix.

# 4) Protein binding:

- APIs bind to plasma proteins such as albumin and these properties result in increased blood residence time.
- API-protein complex can serve as a reservoir in vascular space.
- Main forces for binding to proteins are vander Waal forces, hydrogen bonds and electrostatic forces.
- Charged compounds have greater tendency to bind proteins than uncharged ones.

5) Molecular size& diffusivity:

The ability of an API to diffuse through membranes is called diffusivity (D) which is a function of molecular weight.

The value of D is related to the size and shape of the cavities, as well as the APIs.

\* The APIs with high molecular weight show very slow kinetics.

# 6) Dose size:

- □ For the APIs that require large conventional doses, the volume of sustained dose may be too large to be practical.
- APIs with an oral dose of more than 500 mg are not suitable for SRDFs.
- □ The greater the dose size, the greater the fluctuation in the blood profile.

#### **Biological Properties**

1) Absorption

Absorption rate constant (ka) should be high (0.17-0.23/h).

kr << ka

It is desirable that the rate of absorption is constant and uniform. Absorption should not increase as the dose increases.

The API must be absorbed equally in all areas of the GIT.

## 2) Distribution

Two important parameters used to describe the distribution properties of APIs in the body; the apparent distribution volume (Vd) and the relative distribution ratio (T/P) between the compartments.

Vd is an approximate proportional constant calculated by the ratio of API concentration in the blood to the amount of active substance in the body.

 $Vd = Dose/C_0$ 

 $C_0$ = Initial concentration of the API in the blood after IV injection

## 3) Metabolization

□ Especially in enzyme-rich tissues (such as liver), the APIs are activated/inactivated by metabolizing.

□ Generally, SRDFs of APIs, metabolization rates of which are not very high can be prepared.

□ It is difficult to prepare SRDFs of APIs which are highly metabolized, show complex metabolism, increase/decrease the enzyme synthesis and have active metabolites.

#### 4) Duration of Drug Activity

APIs with a high half-life ( $t_{1/2}$ <2 hours) and a high dose are not suitable for SRDFs.

APIs with  $t_{1/2} = 4-6$  hours are suitable for SRDFs.

☆ The API that has a very long half-life can act as SRDF.

# 5) Side Effects

# **Increased blood concentration increases the potential for side effects.**

Terapeutic index (Tİ) = Toxic dose  $(LD_{50})/Effective dose (ED_{50})$ 

TI Safety

 $T\dot{I} \ge 10$ suitable for SRDF $T\dot{I} < 2$ not suitable for SRDF

#### **Methods Used in Preparation of SRDFs**

- Addition of the API to the capsule prepared from the polymeric material in a solid/liquid/suspended state,
- **Placing the API in a biodegradable solid matrix,**
- Encapsulating the API into the viscous solution of the polymer,
- Adding a second layer onto the tablet prepared from the API mixture (Sandwich tablet),
- Preparation of the heterogeneous dispersion of the API in the hydrophilic matrix (hydrogel),

- Mechanical/chemical controlled-release pumps,
- Chemical bonding of API to polymeric structure,
- Adhesion of the polymer containing the API to the mucincoated surface of GIT and release at the constant rate and remain there for the desired time,
- Floating of low density dosage forms prepared as micropellet in GI fluid (floating dosage forms).

#### **Methods of Microencapsulation:**

- Coaservation
- Interfacial Polymerization
- Electrostatic Methods
- Precipitation Method
- Melting by Heat
- Precipitation with Salt Effect
- Solvent Evaporation Method

Classification of Controlled Drug Delivery Systems (DDSs) According to the API Release Mechanism 1) Dissolution Controlled DDSs

- Matrix Type Dissolution Controlled DDSs
- -Encapsulation Type Dissolution Controlled DDSs
- 2) Diffusion-Controlled DDSs -Matrix Type Diffusion-Controlled DDSs -Membrane Type (Depot) Diffusion-Controlled DDSs
- 3) Solvent Activated DDSs -Swelling Controlled DDSs -Osmotic Controlled DDSs
- 4) Magnetically Conrolled DDSs
   5) Mechanical Force-Triggered DDSs

# 5 SRI Jsed lers olyr epar

Natural Polymers Xanthan gum, Polyurethanes, Guar gum, Polycarbonates etc.

Semi-synthetic Polymers Cellulose (HPMC, NaCMC, Ethyl cellulose etc.)

**Synthetic Polymers** Polyesters, Polyamides, Polyolefins etc.

|    | <b>Properties of Polymer</b> | Material                                            |
|----|------------------------------|-----------------------------------------------------|
| 1. | Insoluble, inert             | Polyethylene, polyvinyl chloride, methyl acrylates- |
|    |                              | methacrylate copolymers, ethyl cellulose            |
| 2. | Insoluble, degradable        | Carnauba wax                                        |
|    |                              | Stearyl alcohol                                     |
|    |                              | Stearic acid                                        |
|    |                              | Polyethylene glycol                                 |
|    |                              | Polyethylene glycol monostearate                    |
|    |                              | Triglycerides                                       |
|    |                              |                                                     |
| 3. | Hydrophilic                  | Methylcellulose, HEC, HPMC, Na-CMC, Sodium          |
|    |                              | alginate                                            |
|    |                              |                                                     |