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WEEK 7: Lattice Boltzmann Method (LBM) 

 

 What is LBM?  

 

 The Lattice Boltzmann Method (LBM) is steadily becoming a relevant method for 

solving the fluid flow equations. 

 

 Its direct connection to the kinetic theory of gases allows for a deeper 

understanding and more detailed modeling of physical phenomena [5,6] 

 

 A particle-based kinetic fluid flow solver based on the Lattice-Boltzmann Method 

(LBM) is utilized to computationally resolve the flow field and the heat transfer in 

the computational domain in which classic time consuming fluid-domain meshing 

is not employed, instead automatically generated lattice which is organized in an 

Octree structure is employed [7] 

 

 There are many approaches to the LBM, and one can indeed think of it as group 

of methods aimed at solving systems of equations for nonlinear hyperbolic 

conservation laws. The common characteristic to all the LBM models (and Lattice 

Gas Automata)[8,9] is their time-stepping model, based on a propagate-collide 

scheme, on top of a lattice discretization 

 

 Equations 

 

The Boltzmann transport equation (mass and momentum equation) can be written in 

discrete velocities in a spatial environment as follows 
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where iΩ  is the collision operator that computes a post-collision state conserving 

mass and linear momentum. If it is assumed that iΩ  = 0, only a streaming operation 

is performed. This equation is discretized on the lattice as: 
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As in the continuum Boltzmann equation, the macroscopic variables can be derived 

from the statistical moment of the PDFs: 
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Moment of zero-order corresponds to the macroscopic density, and the moments of 

first-order provide the momentum in the three directions.  Further moments of higher 

orders can be computed to obtain higher order quantities. Flow density ρ, 

macroscopic velocity, u and specific internal energy, e, can be found from the 

distribution function, f as follows: 
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where m is the particle mass. 

 

During the deformation of compressor flow at very high Reynolds numbers, very high 

normal stresses occur at the wall surfaces (rotor and chamber surfaces), which in 

turn result in intense turbulence fluctuations to be computationally modelled by a 

turbulence model. The approach used for turbulence modelling here is the large eddy 

simulation (LES) based wall adapting local eddy (WALE) viscosity model which 



provides a consistent local eddy-viscosity and the near-wall bahaviour. The actual 

implementation is formulated as follows: 
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where Δ is the filter scale, S is the strain rate tensor of teh resolved scales and  Cs is 

the Smagorinsky constant with a default value of 0.12. 
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