ENE 401 – Energy Design Project I

WEEK 10: PROBLEM SOLUTION

• Problem Solution

- > Tip-speed ratio
 - 2 different blade geometry are examined to study the effects of blade geometry on the power coefficient (C_p) of HAWT (3 blades) with changing tip speed ratios (λ) .
 - There are 2 blade models which are used in the present flow problem with different pitch angles of their airfoils.
 - 20 m/s wind speed is applied at the inflow boundary. Turbines have 3 different angular velocity Ω (rad/s), 600 rpm, 1800 rpm and 3000 rpm. Therefore the tip speed ratios are:

$$\lambda_1 = \frac{20\pi(0.35m)}{20m/s} = 1.1$$

$$\lambda_2 = \frac{60\pi(0.35m)}{20m/s} = 3.3$$

$$\lambda_3 = \frac{100\pi(0.35m)}{20m/s} = 5.5$$

- According to each tip speed ratios, torque values of turbines $(\tau)(N.m)$ are identified from the Function Viewer of the XFlow.
- For the Model 1, the mean torque values are shown as;
- When rotational speed is 600 rpm, $\lambda_1=1.1$, $au_1=1.42\ Nm$

- When rotational speed is 1800 rpm, $\lambda_2=3.3$, $au_2=2.84~Nm$
- When rotational speed is 3000 rpm, $\lambda_3 = 5.5$, $au_3 = 2.51 \ Nm$
- To calculate power coefficient C_p , the formula is used;

$$C_p = \frac{P}{\frac{1}{2}\rho U_{\infty}A}$$

- The extracted power (P) is $\Omega \times \tau$. So that;

$$U_{\infty} = 20 \text{ m/s}$$
 $\rho = 1.225 \text{ kg/m}^3$
 $A = \pi (0.35 \text{ m}^2)$
 $C_{p_1} = 0.05$
 $C_{p_2} = 0.28$
 $C_{p_3} = 0.42$

For the Model 2, the mean torque values are shown as;

- When rotational speed is 600 rpm, $\lambda_1=1.1, \;\; au_1=0.49 \; Nm$
- When rotational speed is 1800 rpm, $\lambda_2=3.3,\, au_2=1.41\,Nm$
- When rotational speed is 3000 rpm, $\lambda_3=5.5$, $au_3=1.78~Nm$
- To calculate power coefficient C_p , the formula is used;

$$C_p = \frac{P}{\frac{1}{2}\rho U_{\infty}A}$$

- The extracted power (P) is $\varOmega \times \tau$. So that;

$$U_{\infty} = 20 m/s$$

$$\rho = 1.225 kg/m^3$$

$$A = \pi(0.35 m^2)$$

$$C_{p_1} = 0.02$$

 $C_{p_2} = 0.14$
 $C_{p_3} = 0.30$

- For Model 2, the torque value is smaller than the Model 1 and likewise, the power coefficient are found to be smaller.
- In Table 5 shown the data for power coefficient, torque and tip speed ratio of Model 1 and Table 6 for Model2 to summarize the quantitative data.

Rotational Speed (Ω)	Tip Speed Ratio (λ)	Torque (τ)	Power Coefficient (C _p)
rpm		N.m	
600	1.1	1.42	0.05
1800	3.3	2.84	0.28
3000	5.5	2.51	0.42

Table 5. Calculated coefficients for Model 1

Rotational Speed (Ω)	Tip Speed Ratio (λ)	Torque (τ)	Power Coefficient (C _p)
rpm		N.m	
600	1.1	0.49	0.02
1800	3.3	1.41	0.14
3000	5.5	1.78	0.30

Table 6. Calculated coefficients for Model 2