
ENE 503 – Computational Fluid Dynamics 

 

WEEK 3: DIFFERENTIAL EQUATIONS 

 

DIFFERENTIAL EQUATIONS: 

 

 Ordinary differential equation: 
 

- Ordinary differential equation (ODE): an equation which, other than the one 

independent variable x and the dependent variable y, also contains derivatives 

from y to x. General form 

F(x,y,y’,y’’ … y
(n)

) = 0 
 

here n is the highest order derivative and the order of the equation is determined 

by the order n of the  
 

- A partial differential equation (PDE) has two or more independent variables. A 
PDE with two independent variables has the following form: 
 
 
 

 

 

with z=z(x,y). 

 

- the order of the highest order partial derivative in the equation determines the 

order here 

 

 A general partial differential equation in coordinates x and y: 
 

 

 

 

 where the coefficients a, b, c, d, e, f and g are in general functions of the 

dependent variable, φ and the independent variables x, and y. 
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 Any solution to the above equation represents a surface in space 

 

 The first derivatives of the above equation are continuous functions of the x and y. 

The total differentials: 
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 The original differential equation can be expressed as 

 

 

 

 

The last three equations above form of a system of three linear equations with 

three unknowns, 
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. The matrix solution can be provided as 

below: 
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by using Cramer’s rule 
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The second order derivatives ıf the dependent variables along the characteristics 

when these derivatives are indeterminant. The denominator of last three 

equations above must be zero. 
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This equation can be written as 
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The slope of the above equation can be determined as: 
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 Characterization depends on the roots of the higher order terms (second order 

terms): 

 

- Hyperbolic nature when b2 – 4ac > 0 

- Parabolic nature when b2 – 4ac > 0 

- Elliptic behavior when b2 – 4ac < 0 

 

 Origin of the terms: 

 

  The “elliptic,” “parabolic,” or “hyperbolic terms are used to label these equations 

is simply a direct analogy with the case for conic sections. 

 

 The general equation for a conic section from analytic geometry is: 

 where if 
 

- b2 – 4ac > 0   the conic is a hyperbola. 

- b2 – 4ac = 0 the conic is a parabola.  

- b2 – 4ac > 0 the conic is an ellipse. 
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