ENE 503 — Computational Fluid Dynamics

WEEK 3: DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS:

e Ordinary differential equation:

- Ordinary differential equation (ODE): an equation which, other than the one
independent variable x and the dependent variable y, also contains derivatives

from y to x. General form
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here n is the highest order derivative and the order of the equation is determined
by the order n of the

- A partial differential equation (PDE) has two or more independent variables. A
PDE with two independent variables has the following form:
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with z=z(x,y).

- the order of the highest order partial derivative in the equation determines the

order here

e A general partial differential equation in coordinates x and y:
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» where the coefficients a, b, ¢, d, e, f and g are in general functions of the

dependent variable, @ and the independent variables x, and y.



» Any solution to the above equation represents a surface in space

» The first derivatives of the above equation are continuous functions of the x and y.
The total differentials:
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» The original differential equation can be expressed as
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The last three equations above form of a system of three linear equations with

2 2 2
three unknowns, a—f, Op , and —f. The matrix solution can be provided as
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by using Cramer’s rule
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The second order derivatives If the dependent variables along the characteristics
when these derivatives are indeterminant. The denominator of last three

equations above must be zero.
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This equation can be written as
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The slope of the above equation can be determined as:
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» Characterization depends on the roots of the higher order terms (second order

terms):

- Hyperbolic nature when b® — 4ac > 0
- Parabolic nature when b? — 4ac > 0
- Elliptic behavior when b2 —4ac <0

e Origin of the terms:

» The “elliptic,” “parabolic,” or “hyperbolic terms are used to label these equations

is simply a direct analogy with the case for conic sections.

» The general equation for a conic section from analytic geometry is:

where if

-b?—4ac >0 the conic is a hyperbola.
- b? — 4ac = 0 the conic is a parabola.

- b? — 4ac > 0 the conic is an ellipse.
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