ENE 503 - Computational Fluid Dynamics

WEEK 3: DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS:

- Ordinary differential equation:

- Ordinary differential equation (ODE): an equation which, other than the one independent variable x and the dependent variable y, also contains derivatives from y to x. General form

$$
F\left(x, y, y^{\prime}, y^{\prime \prime} \ldots y^{(n)}\right)=0
$$

here n is the highest order derivative and the order of the equation is determined by the order n of the

- A partial differential equation (PDE) has two or more independent variables. A PDE with two independent variables has the following form:

$$
F\left(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial x \partial y}, \frac{\partial^{2} z}{\partial y^{2}}, \ldots\right)=0
$$

with $z=z(x, y)$.

- the order of the highest order partial derivative in the equation determines the order here
- A general partial differential equation in coordinates x and y :
$a \frac{\partial^{2} \varphi}{\partial x^{2}}+b \frac{\partial^{2} \varphi}{\partial x \partial y}+c \frac{\partial^{2} \varphi}{\partial y^{2}}+d \frac{\partial \varphi}{\partial x}+e \frac{\partial \varphi}{\partial y}+f \varphi+g=0$
$>$ where the coefficients a, b, c, d, e, f and g are in general functions of the dependent variable, φ and the independent variables x, and y.
> Any solution to the above equation represents a surface in space
$>$ The first derivatives of the above equation are continuous functions of the x and y. The total differentials:
$d \varphi_{x}=\frac{\partial \varphi_{x}}{\partial x} d x+\frac{\partial \varphi_{x}}{\partial y} d y=\frac{\partial^{2} \varphi}{\partial x^{2}} d x+\frac{\partial^{2} \varphi}{\partial x \partial y} d y$
$d \varphi_{y}=\frac{\partial \varphi_{y}}{\partial x} d x+\frac{\partial \varphi_{y}}{\partial y} d y=\frac{\partial^{2} \varphi}{\partial x \partial y} d x+\frac{\partial^{2} \varphi}{\partial y^{2}} d y$
> The original differential equation can be expressed as
$a \frac{\partial^{2} \varphi}{\partial x^{2}}+b \frac{\partial^{2} \varphi}{\partial x \partial y}+c \frac{\partial^{2} \varphi}{\partial y^{2}}=-d \frac{\partial \varphi}{\partial x}-e \frac{\partial \varphi}{\partial y}-f \varphi-g=h$

The last three equations above form of a system of three linear equations with three unknowns, $\frac{\partial^{2} \varphi}{\partial x^{2}}, \frac{\partial^{2} \varphi}{\partial x \partial y}$, and $\frac{\partial^{2} \varphi}{\partial y^{2}}$. The matrix solution can be provided as below:
$\left[\begin{array}{lcc}a & b & c \\ d x & d y & d z \\ 0 & d x & d y\end{array}\right]\left[\begin{array}{l}\frac{\partial^{2} \varphi}{\partial x^{2}} \\ \frac{\partial^{2} \varphi}{\partial x \partial y} \\ \frac{\partial^{2} \varphi}{\partial y^{2}}\end{array}\right]=\left[\begin{array}{l}h \\ d \varphi_{x} \\ d \varphi_{y}\end{array}\right]$
by using Cramer's rule

$$
\begin{aligned}
& \frac{\partial^{2} \varphi}{\partial x^{2}}=\frac{\left|\begin{array}{lll}
h & b & c \\
d \varphi_{x} & d y & 0 \\
d \varphi_{y} & d x & d y
\end{array}\right|}{\left|\begin{array}{lll}
a & b & c \\
d x & d y & 0 \\
0 & d x & d y
\end{array}\right|} \\
& \frac{\partial^{2} \varphi}{\partial x \partial y}=\frac{\left|\begin{array}{lll}
a & b & h \\
d x & d \varphi_{x} & 0 \\
0 & d \varphi_{y} & d y
\end{array}\right|}{\left|\begin{array}{lll}
a & b & c \\
d x & d y & 0 \\
0 & d x & d y
\end{array}\right|} \\
& \frac{\partial^{2} \varphi}{\partial y^{2}}=\frac{\left|\begin{array}{lll}
a & b & h \\
d x & d y & 0 \\
0 & d x & d \varphi_{y}
\end{array}\right|}{\left|\begin{array}{lll}
a & b & c \\
d x & d y & 0 \\
0 & d x & d y
\end{array}\right|}
\end{aligned}
$$

The second order derivatives if the dependent variables along the characteristics when these derivatives are indeterminant. The denominator of last three equations above must be zero.

$$
\left|\begin{array}{lll}
a & b & c \\
d x & d y & 0 \\
0 & d x & d y
\end{array}\right|=0
$$

This equation can be written as
$a\left(\frac{d y}{d x}\right)^{2}-b\left(\frac{d y}{d x}\right)+c=0$

The slope of the above equation can be determined as:
$\frac{d y}{d x}=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$>$ Characterization depends on the roots of the higher order terms (second order terms):

- Hyperbolic nature when $b^{2}-4 a c>0$
- Parabolic nature when $b^{2}-4 a c>0$
- Elliptic behavior when b2-4ac<0
- Origin of the terms:
> The "elliptic," "parabolic," or "hyperbolic terms are used to label these equations is simply a direct analogy with the case for conic sections.
$>$ The general equation for a conic section from analytic geometry is:
where if
$-b^{2}-4 a c>0$ the conic is a hyperbola.
$-b^{2}-4 a c=0$ the conic is a parabola.
$-b^{2}-4 a c>0$ the conic is an ellipse.

References:

1. Aksel, M.H., 2016, "Notes on Fluids Mechanics", Vol. 1, METU Publications
2. Versteeg H.K., and W. Malalasekera V., 1995, "Computational Fluid Dynamics: The Finite Volume Method", Longman Scientific \& Technical, ISBN 0-582-21884-5
