ENE 503 — Computational Fluid Dynamics

WEEK 5: NUMERICAL DISCRETIZATION

NUMERICAL DISCRETIZATION:

e Contents:

- Introduction to numerical discretization
- Finite difference method (FDM)

- Finite element method (FEM)

- Finite volume method (FVM)

e Introduction:

- Given the governing equations describing fluid flow motion, one can reproduce
the information about the flow

- The governing equations of fluid motion are represented ina series of partial
differential equations which contain the raw flow variables
- The computer solve these partial differential equation by dealing with numbers.
- Therefore, the computer can transform the flow problem into a numerical one.
- The process through which this transformation occurs is known as
“discretization” — making things discrete in a finite space
- Therefore, all partial differential equation eventually become algebraic in nature
and can be solved by computer directly.
- The most well-known discretization techniques are:

- FDM

- FEM

- FVYM
also used

- Control volume methods (CVM)

- Spectral methods (SM)

- Filter scheme methods (FSM)

- Boundary integral equation methods (BIEM)



Simplification of Navier-Stokes equations:

The Navier-Stokes equations are defined as:
- The continuity equation:
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The FDM:

- Taylor Series expansion is used to build up a library of equations that describe
the derivatives of a particular variable

- This mathematical process allows the value of a variable at a particular point in
space to be calculated from either the value of that variable at the previous
point, or the value of the variable at the next point.
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where U is the velocity component in the x-direction, h is the infinitesimal
integral distance in the x-direction and derivatives are taken with respect to x.
- Equation (1) can be rearranged to calculate dU/dx as in Equation (3). This
process is called “forward differencing”

- Equation (2) can also be used to calculate dU/dx as in Equation (4). This
process is called “backward differencing”

- And Equation (1) and (2) can be combined to calculate dU/dx as in Equation

(5). This process is called “central differencing”
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- The Taylor series is an infinite series and therefore the O (h) is introduced

to represent the “rest of the terms” here.
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