
ENE 503 – Computational Fluid Dynamics 

 

WEEK 5: NUMERICAL DISCRETIZATION 

 

NUMERICAL DISCRETIZATION: 

 

 Contents: 
 

- Introduction to numerical discretization 

- Finite difference method (FDM) 

- Finite element method (FEM) 

- Finite volume method (FVM) 

 

 Introduction: 
 
- Given the governing equations describing fluid flow motion, one can reproduce  

   the information about the flow 

- The governing equations of fluid motion are represented ina  series of partial 

differential equations which contain the raw flow variables  

- The computer solve these partial differential equation by dealing with numbers. 

- Therefore, the computer can transform the flow problem into a numerical one. 

- The process through which this transformation occurs is known as 

“discretization” – making things discrete in a finite space 

- Therefore, all partial differential equation eventually become algebraic in nature 

and can be solved by computer directly. 

- The most well-known discretization techniques are: 

  - FDM 

  - FEM 

  - FVM 

also used 

  - Control volume methods (CVM) 

  - Spectral methods (SM) 

  - Filter scheme methods (FSM) 

  - Boundary integral equation methods (BIEM) 



 

 Simplification of Navier-Stokes equations: 
 

The Navier-Stokes equations are defined as: 

 - The continuity equation: 

 

 

 

 - The momentum equation: 

 

 

 

 - Energy equation 

 

 

 

 

 

 
 
 
 
 The FDM: 
 

- Taylor Series expansion is used to build up a library of equations that describe  

the derivatives of a particular variable 

-  This mathematical process allows the value of a variable at a particular point in  

space to be calculated from either the value of that variable at the previous 

point, or the value of the variable at the next point. 
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where U is the velocity component in the x-direction, h is the infinitesimal 

integral distance in the x-direction and derivatives are taken with respect to x.  

- Equation (1) can be rearranged to calculate dU/dx as in Equation (3). This 

process is called “forward differencing” 

- Equation (2) can also be used to calculate dU/dx as in Equation (4). This 

process is called “backward differencing” 

- And Equation (1) and (2) can be combined to calculate dU/dx as in Equation 

(5). This process is called “central differencing” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 - The Taylor series is an infinite series and therefore the O (h) is introduced  

 to represent the “rest of the terms” here. 
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