ENE 327 – Pumps and Compressors

WEEK 2: FUNDAMENTAL RELATIONS FOR THE FLOW THROUGH AN ARBITRARY TURBOMACHINE

FUNDAMENTAL RELATIONS FOR THE FLOW THROUGH AN ARBITRARY TURBOMACHINE:

1-D Approximation

- \triangleright The thickness of the blades are assumed to be zero.
- \triangleright The number of blades is infinity, axisymmetric flow assumption.
- \triangleright The flow is assumed to be uniform over each cross section.

Figure1. Flow through meridional plane

a) Continuity Equation [1]:

The fluid flows in through area, A_1 of the control surface and flows out through area, A_2 of the control surface. No flow can take place through other surfaces of the control

volume, since they are formed by streamlines and $\vec{v} \cdot \vec{n} = 0$ on these surfaces. Therefore,

$$
\int_{A_1} \rho_1 \cdot (\overrightarrow{v_1} \cdot \overrightarrow{n_1}) \cdot dA + \int_{A_2} \rho_2 \cdot (\overrightarrow{v_2} \cdot \overrightarrow{n_2}) \cdot dA = 0
$$

1-D assumption assumes that areas A_1 and A_2 are perpendicular to velocities \vec{v}_1 and $\overrightarrow{v_2}$, respectively; then

$$
\vec{v}_1 \cdot \hat{n_1} = -v_{m_1}
$$

$$
\vec{v}_2 \cdot \hat{n_2} = +v_{m_2}
$$

Hence,

$$
-\int_{A_1} \rho_1 \cdot \overrightarrow{v_{m_1}} \cdot dA + \int_{A_2} \rho_2 \cdot \overrightarrow{v_{m_2}} \cdot dA = 0
$$

For a 1-D flow, the properties are uniform over each cross section, then

$$
m = \rho_1 \cdot v_{m_1} \cdot A_1 = \rho_2 \cdot v_{m_2} \cdot A_2
$$

Noting that $A_1 = 2\pi r_1 b_1$ and $A_2 = 2\pi r_2 b_2$ with b_1 and b_2 are the width of the blades of the inlet and outlet, respectively.

$$
\dot{m} = 2\pi r_1 \cdot b_1 \cdot v_{m_1} = 2\pi r_2 \cdot b_2 \cdot v_{m_2} = constant
$$

b) Conservation of Angular Momentum [1]:

For a steady flow, the tangential component of the angular momentum is

$$
T_Q = \int_{A_1} \rho_1 \cdot r_1 \cdot v_{Q_1} \cdot (\overrightarrow{v_1} \cdot \overrightarrow{n_1}) \cdot dA + \int_{A_2} \rho_2 \cdot r_2 \cdot v_{Q_2} \cdot (\overrightarrow{v_2} \cdot \overrightarrow{n_2}) \cdot dA
$$

which can be rearranged to yield

$$
T_Q = \int_{A_2} \rho_2 \cdot r_2 \cdot v_{Q_2} \cdot v_{m_2} \cdot dA - \int_{A_1} \rho_1 \cdot r_1 \cdot v_{Q_1} \cdot v_{Q_1} \cdot dA
$$

For the uniform flow over each cross-section

$$
T_Q = \rho_2. r_2. v_{Q_2}. v_{m_2}. A_2 - \rho_1. r_1. v_{Q_1}. v_{m_1}. A_1
$$

Now, using the continuity equation;

$$
T_0 = m r_2 \cdot v_{0_2} - m r_1 \cdot v_{0_1}
$$

rearrange this equation;

$$
T_Q = m. [r_2. v_{Q_2} - r_1. v_{Q_1}]
$$

which is known Euler's turbine equation.

- The torque developed is equal to the rate of change of angular momentum
- The torque exerted in a fluid element in angular motion is equal to mass flow rate times the change in $r.V_Q$. For a flow in which the torque is zero $r.V_Q =$ constant. This is called a free vortex flow.

Figure 2: Swirl in a turbomachinery motor

The velocity component at the inlet and outlet of a pump and a turbine are shown, respectively.

Figure 3. Velocity components

$$
\begin{aligned}\n\dot{m} \cdot r_2 \cdot v_{Q_2} \\
\dot{m} \cdot r_1 \cdot v_{Q_1} \\
\dot{m} \cdot r_2 \cdot v_{Q_2} > \dot{m} \cdot r_1 \cdot v_{Q_1} \\
T_Q > 0(\text{pump}) \\
\dot{m} \cdot r_2 \cdot v_{Q_2} < \dot{m} \cdot r_1 \cdot v_{Q_1} \\
T_Q < 0(\text{turbine})\n\end{aligned}
$$

REFERENCES

1. Aksel, M.H., 2016, "Notes on Fluids Mechanics", Vol. 1, METU Publications

2. DOUGLAS, J. F., GASIOREK, J. M. and SWAFFIELD, J. A., *Fluid Mechanics,* 3rd ed., Prentice Hall, Inc., New Jersey, 2003.

3. FOX, R. W. and MCDONALD, A. T., *Introduction to Fluid Mechanics,* 6th ed., John Wiley and Sons, Inc., New York, 2005.

4. ÜÇER, A. Ş., *Turbomachinery,* Middle East Technical University, Ankara,Turkey, 1982.