ENE 327 – Pumps and Compressors

WEEK 9: PERFORMANCE CHARACTERISTICS OF SIMILAR OPERATING POINTS

PERFORMANCE CHARACTERISTICS OF SIMILAR OPERATING POINTS

In this section, the affinity law and conclusions reached by keeping them constant are investigated.

Two important cases,

1) When the same turbomachine is operating at different rotational speeds

2) When the geometrically similar turbomachines are operating at the same rotational speeds, discussed.

1) The same turbomachine operating of different rotational speeds

d=constant

$$w = \frac{2\pi N}{60}$$

$$\Pi_Q = \frac{Q}{wd^3}$$

$$\Pi_Q{}' = \frac{Q}{N}$$

$$\Pi_h = \frac{gh}{w^2 d^2}$$

$$\Pi_{h}' = \frac{gh}{N^{2}}$$
$$\Pi_{P} = \frac{P}{w^{3}d^{5}}$$
$$\Pi_{P}' = \frac{P}{N^{3}}$$

2) Geometrically similar turbomachines operating at same rotational speed

Affinity laws for the constant N:

$$\Pi_Q = \frac{Q}{Nd^3}$$
$$\Pi_Q'' = \frac{Q}{d^3}$$
$$\Pi_h = \frac{h}{N^2 d^2}$$
$$\Pi_h'' = \frac{h}{d^2}$$
$$\Pi_P = \frac{P}{N^3 d^5}$$

$$\Pi_h^{\prime\prime} = \frac{P}{d^5}$$

REFERENCES

1. Aksel, M.H., 2016, "Notes on Fluids Mechanics", Vol. 1, METU Publications

2. DOUGLAS, J. F., GASIOREK, J. M. and SWAFFIELD, J. A., *Fluid Mechanics*, 3rd ed., Prentice Hall, Inc., New Jersey, 2003.

3. FOX, R. W. and MCDONALD, A. T., *Introduction to Fluid Mechanics*, 6th ed., John Wiley and Sons, Inc., New York, 2005.

4. ÜÇER, A. Ş., *Turbomachinery,* Middle East Technical University, Ankara,Turkey, 1982.