Practice 32.11.

Ephedrine Hydrochloride Nasal Drop (Remington $20^{\text {th }}$ ed.)

Ephedrine Hydrochloride	0.5 g
Chlorobutanol	0.5 g
Sodium chloride	0.5 g
Purified water	q.s.

Practice 32.12.

Oxymetazoline Hydrochloride Nasal Spray

Oxymetazoline Hydrochloride	5 mg
Benzalkonium chloride	1.5 g
EDTA	5 mg
pH 6.0 phosphate buffer	10 ml

Pratice 32.4.

Silver Nitrate Eye Drop
15 ml , prepare an isotonic 1% silver nitrate solution.

Practice 32.15.

Aluminum Sulphate Ear Drop

Aluminum Sulphate	225 g
Acetic acid $(\% 33)$	250 ml
Tartaric acid	45 g
Calcium carbonate	100 g
Purified water	750 ml

Practice 32.16.

Phenolic Ear Drop

Phenol-Glycerine*		40 ml
Glycerine	q.s.	100 ml

* Phenol-Glycerine	
Phenol	160 g
Glycerine	840 g

Practice 32.17.

Sodium Bicarbonate Ear Drop (Remington $20^{\text {th }}$ ed.)
Sodium bicarbonate 5 g
Glycerine
30 ml
Purified water q.s.
100 ml

Practice 31.10.

Dialysis Solution

Solution I

Sodium chloride
Potassium chloride
Calcium chloride dihydrate
Magnesium chloride hexahydrate
Acetic acid (\%100)
Water obtained by reverse osmosis method

Molecular weight

214.800 g
 58.5

$2.612 \mathrm{~g} \quad 74.6$
7.720 g
147.0
203.0
3.558 g
60.0
q.s. $\quad 1000.000 \mathrm{ml}$

Solution II

Sodium bicarbonate
84.0 g
84.0
q.s. $\quad 1000.0 \mathrm{ml}$

Preparation:

Solution I and Solution II are mixed at specific ratios and diluted with water obtained by reverse osmosis. (Solution I + Solution II + Water obtained by reverse osmosis method: 1 liter +1.225 liter +32.775 liters)

Questions:

1. Why should this formulation be prepared with water obtained by reverse osmosis?
2. Calculate the amounts of $\mathrm{mEq} / 1, \mathrm{mmol} / 1$ and total solution osmolarities of $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{+2}, \mathrm{Mg}^{+2}$, $\mathrm{HCO}_{3}^{-}, \mathrm{Cl}^{-}$, and $\mathrm{CH} 3 \mathrm{COO}^{-}$in the prepared solution.
3. What is the pH of the diluted solution?
4. How is this solution used?
5. What are the characteristics of the ideal dialysis solution?
