SAR of β- Blockers

Modification of ISOproterenol (Adr. Agonist structure)

1) 3'4'-di-OH groups have been replaced by two chloro groups

Dichloroisoproterenol

partial agonist (not a pure antagonist)

2) Catechol group have been replaced by naphthalene

Pronethalol

weak antagonist but much side effect

SAR of B- Blockers

Aryloxypropanolamines

- 1. secondary amine for optimal activity
- 2. β -OH-substituted carbon must be in the S absolute configuration
- 3. an -OCH₂- group (oxymethylene bridge) has been incorporated between the aromatic ring and the ethylamino side chain. (gives affinity to drug) \rightarrow more potent β -blockers

Aryloxypropanolamines

3. nature of the aromatic ring

- affects the ADME
- the presence of a *para*-substituent of sufficient size on the aromatic ring along with the absence of meta-substituents. $\rightarrow \beta_1$ -selectivity
- E.g. Practolol

Aryloxypropanolamines

4. nature molecule

lipophilic nature -> CNS side effects, such as, confusion, depression

→ primarily cleared by the **liver** (doses adjusted in patients with liver disease)

E.g. Propranolol

hydrophilic drugs → no CNS side effects

→ cleared by the **kidney** (doses adjusted in renal failure)
E.g. atenolol

1

First Generation

(1) Propranolol

(6) Carteolol

Ar.

First Generation

Antihypertensive drugs used for the treatment of hypertension

- Propranolol, Nadolol, Penbutolol, Pindolol, Carteolol, Timolol

intrinsic β -agonistic activity (ISA), Partial agonist (used when little cardiac ↓ HR needed)

Drugs used in glaucoma

- Carteolol, timolol, levobunolol, and metipranolol are used topically to treat open-angle glaucoma.
- they may reduce the production of aqueous humor.

First Generation

Other uses

- angina pectoris, myocardial infarction, migraine prophylaxis

Contraindication

- exhibits no selectivity for β -receptors, it is contraindicated in the presence of conditions such as asthma and bronchitis.

First Generation

(9) Sotalol

- Phenylethylamine derivative
- Antiarrythmic drug

blocks K⁺ channels → stop the inward K⁺ current that <u>delays cardiac</u>
 <u>repolarization</u> → treatment ventricular arrhythmias and atrial fibrillation

Second Generation

- Cardioselective β₁ antagonist
- Adv. = lack of a blocking effect on the β_2 -receptors in the bronchi \rightarrow safe for use in patients who have bronchitis or bronchial asthma.

Second Generation

- Use: the treatment of hypertension

- Atenolol and metoprolol

Glaucoma

- Betaxolol

Cardiac arrhythmias

Esmolol and acebutolol

 H_2N

Third Generation

(1) Labetalol

- phenylethanolamine derivative
- $\beta 1.5 > \alpha_1$ blocking activities
- used as racemate

(1R,1'R) isomer [Dilevalol] $\rightarrow \beta$ -blocker

(1S,1'R) isomer \rightarrow Powerful α_1 -blocker

(1S,1'S) isomer & (1R,1'S) isomer \rightarrow no blocking activity

Use: management of hypertension

α1 -blocking effects produce vasodilation

 β – blocking effects prevent the reflex tachycardia

Third Generation

(2) Carvedilol

- phenylethanolamine derivative
- $\beta 10 \text{ to } 100 > \alpha_1 \text{ blocking activities}$
- used as racemate
 R isomer → α1 -blocker
 S isomer → β -blocker + α1 -blocker
- It possesses <u>antioxidant activity</u> and an <u>antiproliferative effect</u> on vascular smooth muscle cells.

Use:

Treatment of hypertension and congestive heart failure

End of the topic

Reference:

Textbook of org. medi. and ph'cal chem. – Wilson and Giswolds Principles of medicinal chemistry – W. C. Foye