

SympatholVIimetics

Amit Z Chaudhari

INTRO

Defination:

 Compounds that produce effects similar to stimulation of sympathetic nervous activity are known as sympathomimetic.

Synonym: Adrenergic stimulants

Act by:

stimulating adrenergic receptors (adrenoceptors, ARs)

or

affect the life cycle of adrenergic neurotransmitters (NTs)

NEUROTRANSMITTERS

- Norepinephrine (NE, noradrenaline),
- Epinephrine (E, adrenaline) , dopamine (DA)

Structure :

Chemically are catecholamines (CAs)

NEUROCHEMISTRY

Model of life cycle of NE

NEUROCHEMISTRY

Biosynthesis:

(R) Configuration of NE and E

HO NH_2 СООН HO L - DOPA

Dopamine

dopamine β -hydroxylase

Norepinephrine

NEUROCHEMISTRY

Drugs affecting life cycle of NTs

Drugs Affecting CAs Biosynthesis

Metyrosine (α -Methyl-L-tyrosine)

Drugs Affecting Catecholamine Storage and Release

- Reserpine
- 2. Guanethidine

Drugs affecting life cycle of NTs

Drugs Affecting CAs Biosynthesis

Metyrosine

- inhibits any of the three enzymes involved in CA biosynthesis
- decrease CAs,

tyrosine hydroxylase DOPA decarboxylase dopamine β-hydroxylase

M/A

Metyrosine differs structurally from tyrosine only in the presence of an α-methyl group . i.e. structurally similar substrate for enzyme. Thus metyosine competate with natural molecules for binding with the enzymes → ↓ CA syn.

Use

- Management of pheochromocytoma (tumor of pheochromocytes)

Drugs affecting life cycle of NTs

Drugs Affecting CAs Storage and Release

(1) Reserpine

- B.S. Rauwolfia serpentina
 - sarpgandha Ayurvedic

Chemistry:

indole alkaloid

M/A

- Reserpine binds extremely tightly with and blocks VMAT → ↓ transport
 of CAs from cytoplasm into the storage vesicles → retained NE will be
 metabolized by mitochondrial MAO within cytoplasm
- thus depletion of NE release in sympathetic cleft
- blood vessels will relax and dilate → lowers b. p.
- PNS, CNS, adrenal medulla and also depletes storage of serotonin and

1

ADRENERGIC RECEPTORS

Adrenergic Receptor Subtypes

- are membrane-associated G-protein-coupled receptors receptors
- G-protein = guanine nucleotide-binding proteins
- In 1948, Ahlquist proposed and designated α and β adrenoceptors based on their apparent drug sensitivity.

Result of agonists affinity toward isolated heart muscles and isolated bronchial smooth muscle.

Isolated organs	Sensitivity	Designation	
Blood vessel	E > NE > ISO	α	
Heart	ISO > E > NE	β	

ADRENERGIC RECEPTORS

Adrenergic Receptor Subtypes

TABLE 16.3 Distribution and Effects of Adrenoceptors and Main Uses of the Adrenergic Drugs

Organ or Tissue	Predominant Adrenoceptors	Effect of Activation	Physiological Effect	Drugs	Therapeutic Uses
Blood vessels and skin	α_1	Vasoconstriction	↑ Blood pressure	α_1 -Agonists	Shock, hypotension
Mucous membranes	α_1	Vasoconstriction		α_1 -Agonists α_1 -Antagonists	Nasal congestion Hypertension
Prostatic gland muscle	α_{1A}	Contraction	Prostatic hyperplasia	α_{1A} -Antagonists	ВРН
CNS	α_2	↓ NE release	↓ Blood pressure	α_2 -Agonists	Hypertension
Heart muscle	$eta_1^{(ext{minor }eta_2,\ eta_3)}$	Muscle contraction	↑ Heart rate & force	β_1 -Antagonists	Hypertensior Arrhythmias
Bronchial smooth muscle	α_1	Smooth muscle contraction	Closes airways		
	eta_2 (Bronchodilation)	Smooth muscle relaxation	Dilates & opens airways	β_2 -Agonists	Asthma and COPD
Uterus (pregnant)	α_1	Muscle contraction			
	eta_2	Smooth muscle relaxation	(-) Uterine contractions	β_2 -Antagonists	Premature labor
Kidney	$oldsymbol{eta}_1$	Increases rennin secretion	↑ Blood pressure		
					7

Aromatic substituents

3', 4'-diOH for both α & β agonist activity metabolized by COMT→ poor oral activity and short DOA hydrophilic → poor CNS activity

3', 5'-diOH (e.g., metaproterenol)
3'-CH₂OH, 4'-OH (e.g., albuterol)
↑ β₂ activity
↓ degradation by COMT →
↑ absorption, oral activity, & DOA

4'-OH is more important for β activity 3'-OH is more important for α activity (e.g., phenylephrine: α -agonist)

No phenolic substitution: ↓both α and β activity direct or indirect activity Structure required for activity:

- 1. β-Phenylethylamine
- Catechol ring(1R)-OH

HO
$$(\beta)$$
 (α) $($

R₁-Substitution on N

↑ the size of R₁→ ↑ β activity $\downarrow \alpha$ activity \downarrow degradation by MAO

t-butyl: ↑ β₂ activity e.g. Colterol

large LPL: \alpha_c-blocking activity

e.g. labetalol

R₂-Sustitution on C₂

small alkyl groups (Me, Et) tolerated

↓ degration by MAO

Wilson and Gisvold's

still substrates for COMT → little effect on DOA

Et group:

- $\downarrow \alpha >> \beta$ (more β -selective, e.g., ethylnorepinephrine)
- ↑ CNS activity
- ↑ oral activity & DOA
- (2S) methyl group: ↑ α₂ activity

2

Structure required for activity:

- β-Phenylethylamine
- Catechol ring
- (1R)-OH

Optical Isomerism

- For CAs, the more potent enantiomer has the (1R) configuration. This enantiomer is typically several 100-fold more potent than the enantiomer with the (1S) configuration.

2. R₁, Substitution on the Amino Nitrogen

- Determines α or β Receptor Selectivity.
- Primary and secondary amines have good adrenergic activity, whereas tertiary amines and quaternary ammonium salts do not.

2. R₁, Substitution on the Amino Nitrogen

- As the size of the nitrogen substituent increases, α -receptor agonist activity generally decreases and β -receptor agonist activity increases
 - + protect the amino group from undergoing metabolism by MAO

Norepinephrine (NE) $\alpha > \beta$ agonist α agonist

Epinephrine (E) α , β_1 and β_2 agonist nonselective α and β agonist

Isoproterenol (ISO) N-t-ButyInorepinephrine (Colterol) β_1 and β_2 agonists nonselective β agonist selective β_2 agonist

2. R₁, Substitution on the Amino Nitrogen

large lipophilic (LPL) groups have can α1-blocking activity e.g.
 labetalol

3. R_2 , Substitution on the α –Carbon

HO
$$(\beta)$$
 (β) $($

R₂-Sustitution on C₂

small alkyl groups (Me, Et) tolerated

↓ degration by MAO

still substrates for COMT → little effect on DOA

Et group:

 $\downarrow \alpha >> \beta$ (more β -selective, e.g., ethylnorepinephrine)

↑ CNS activity

↑ oral activity & DOA

(2S) methyl group: $\uparrow \alpha_2$ activity

3. R₂, Substitution on the α – Carbon

- Substitution by small alkyl group slows metabolism by MAO with little effect on DOA
- Lipophilicity of R₂ substituted compounds often exhibit enhanced oral effectiveness and greater CNS activity.
- An ethyl group in this position diminishes α -activity far more than β activity, affording compounds with β selectivity (e.g., ethylnorepinephrine and isoetharine).

- 3. R₂, Substitution on the α –Carbon
- α methylnorepinephrine, it is the erythro (1R,2S) isomer that possesses significant activity at α ₂-receptors

4. OH substitution on the β –carbon

HO
$$(\alpha)$$
 R_1
 (β)
 R_2

- Essential
- generally decreases CNS activity largely because it lowers lipid solubility
- Compounds lacking the -OH group (e.g. DA) have a greatly reduced adrenergic receptor activity.

5. Substitution on the Aromatic Ring

Aromatic substituents

3', 4'-diOH for both α & β agonist activity metabolized by COMT→ poor oral activity and short DOA hydrophilic → poor CNS activity

3', 5'-diOH (e.g., metaproterenol) 3'-CH₂OH, 4'-OH (e.g., albuterol)

 $\uparrow \beta_2$ activity

↓ degradation by COMT →
↑ absorption, oral activity.

↑ absorption, oral activity, & DOA

4'-OH is more important for β activity 3'-OH is more important for α activity (e.g., phenylephrine: α -agonist)

No phenolic substitution:

5. Substitution on the Aromatic Ring

- replacement of the catechol function of ISO with the resorcinol structure gives a selective β₂-agonist, e.g. metaproterenol
- It will longer the DOA as because the resorcinol ring is not a substrate for COMT

5. Substitution on the Aromatic Ring

replacement of the meta-OH of the catechol structure with a hydroxymethyl group gives agents, such as albuterol selective β 2-agonist

removal of the p-OH group from E gives phenylephrine which lacks β action but has less α_1 -agonist property

6. CAs without OH Groups

- loss of direct sympathomimetic activity becomes indirectly sympathomimetics
- not metabolized by COMT, and they are orally active and have longer DOA
- e.g. amphetamine

SAR (imidazoline)

Aromatic moiety
$$\left\{\begin{array}{c} Ar - X - V \\ N \\ H \end{array}\right\}$$
 Imidazoline ring Bridging unit

1. bridging unit (X)

 $X = usually CH_2 (\alpha_1 agonists) or NH (\alpha_2 agonists)$

- usually a single methylene group [are 2-Arylimidazoline derivatives

&

-] & a amino group [2-Aminoimidazoline derivatives].
- e.g. Oxymetazoline

3

SAR (imidazoline)

2. Imidazoline ring

- open-ring imidazolines that are highly active α_2 -agonists.

$$CI = N - NH$$

$$CH = N - NH_2$$

$$CI$$

3. aromatic ring

Guanabenz

 agonist activity is enhanced when the aromatic ring is <u>substituted</u> with halogen substituents like chlorine (Cl) or small alkyl groups like methyl group, particularly when they are placed in the two <u>ortho</u> <u>positions</u>.