FACULTY OF ENGINEERING
DEPARTMENT OF CHEMICAL ENGINEERING

INTRODUCTION TO CHEMICAL ENGINEERING CEN 101

Assoc.Prof.Dr. Hakan KAYI

SAMPLE PROBLEMS WITH SOLUTIONS

Convert the following values to desired units.
a) $554 \frac{\mathrm{~m}^{4}}{\text { day. } \mathrm{kg}} \rightarrow \frac{\mathrm{cm}^{4}}{\min \cdot g}$
b) $5.37 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~min}} \rightarrow \mathrm{hP}$
c) $760 \frac{\text { miles }}{h} \rightarrow \frac{\mathrm{~m}}{\mathrm{~s}}$
d) $921 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \rightarrow \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}$
e) $800 \mathrm{mmHg} \rightarrow$ psia, kPa and atm

$$
\begin{aligned}
& \text { f) }-25^{\circ} \mathrm{F} \rightarrow K \\
& \text { g) } 23 \frac{\mathrm{lbm} \cdot \mathrm{ft}}{\mathrm{~min}^{2}} \rightarrow \frac{\mathrm{~kg} \cdot \mathrm{~cm}}{\mathrm{~s}^{2}} \\
& \text { h) } 0.981 \frac{\mathrm{Btu}}{\mathrm{lbm} \cdot{ }^{\circ} \mathrm{C}} \rightarrow \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \\
& \text { i) } 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \rightarrow \frac{\mathrm{~cm}^{3} \cdot \mathrm{bar}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& \text { j) } 0.052 \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \rightarrow \frac{\mathrm{lbm}}{\mathrm{ft.h}}
\end{aligned}
$$

a) $554 \frac{\mathrm{~m}^{4}}{\text { day. } \mathrm{kg}} \cdot \frac{10^{8} \mathrm{~cm}^{4}}{1 \mathrm{~m}^{4}} \cdot \frac{1 \mathrm{day}}{1440 \min } \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=38472.2 \frac{\mathrm{~cm}^{4}}{\min \cdot g}$
b) $5.37 \times 10^{3} \frac{\mathrm{~kJ}}{\min } \cdot \frac{0.02235 \mathrm{hP}}{1\left(\frac{\mathrm{~kJ}}{\min }\right)}=120 \mathrm{hP}$
c) $760 \frac{\text { miles }}{\mathrm{h}} \cdot \frac{1609 \mathrm{~m}}{1 \mathrm{mile}} \cdot \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=340 \frac{\mathrm{~m}}{\mathrm{~s}}$
d) $921 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot \frac{2.2046 \mathrm{lbm}}{1 \mathrm{~kg}} \cdot \frac{1 \mathrm{~m}^{3}}{35.315 \mathrm{ft}^{3}}=57.5 \frac{\mathrm{lbm}}{\mathrm{ft}}{ }^{3}$

$$
\begin{aligned}
& \text { e) } 800 \mathrm{mmHg} \cdot \frac{0.0193 \mathrm{psia}}{1 \mathrm{mmHg}}=15.44 \mathrm{psia} \\
& 800 \mathrm{mmHg} \cdot \frac{0.1333 \mathrm{kPa}}{1 \mathrm{mmHg}}=106.64 \mathrm{kPa} \\
& 800 \mathrm{mmHg} \cdot \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=1.05 \mathrm{~atm} \\
& \text { f) }-25^{\circ} \mathrm{F}=\left(-25^{\circ} \mathrm{F}+459.67\right) \cdot \frac{5}{9}=241.48 \mathrm{~K}
\end{aligned}
$$

g) $23 \frac{\mathrm{lbm} \cdot \mathrm{ft}}{\mathrm{min}^{2}} \cdot \frac{1 \mathrm{~kg}}{2.2046 \mathrm{lbm}} \cdot \frac{30.48 \mathrm{~cm}}{1 \mathrm{ft}} \cdot \frac{1 \mathrm{~min}^{2}}{60^{2} \mathrm{~s}}=0.088 \frac{\mathrm{~kg} \cdot \mathrm{~cm}}{\mathrm{~s}^{2}}$
h) $0.981 \frac{\mathrm{Btu}}{\mathrm{lbm} \cdot{ }^{\circ} \mathrm{C}} \cdot \frac{1055.06 \mathrm{~J}}{1 \mathrm{Btu}} \cdot \frac{2.2046 \mathrm{lbm}}{1000 \mathrm{~g}}=2.28 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}$
i) $8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot \frac{10 \mathrm{~cm}^{3} \cdot \mathrm{bar}}{1 \mathrm{~J}}=\frac{83.14 \mathrm{~cm}^{3} \cdot \mathrm{bar}}{\mathrm{mol} \cdot \mathrm{K}}$
j) $0.052 \frac{\mathrm{~kg}}{\mathrm{~m} . \mathrm{s}} \cdot \frac{2.2046 \mathrm{lbm}}{1 \mathrm{~kg}} \cdot \frac{1 \mathrm{~m}}{3.28 \mathrm{ft}} \cdot \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=125.8 \frac{\mathrm{lbm}}{\mathrm{ft} \cdot \mathrm{h}}$

Fill in the table given below

${ }^{\circ} \mathbf{C}$	${ }^{\circ} \mathbf{F}$	\mathbf{K}	${ }^{\circ} \mathbf{R}$
-40	$?$	$?$	$?$
$?$	77	$?$	$?$
$?$	$?$	698	$?$
$?$	$?$	$?$	69.8

$$
\begin{aligned}
& { }^{\circ} \mathrm{F}=32+1.8^{\circ} \mathrm{C} \\
& \mathrm{~K}={ }^{\circ} \mathrm{C}+273.15 \\
& { }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459.67=491.67+1.8^{\circ} \mathrm{C}
\end{aligned}
$$

$$
-40^{\circ} \mathrm{C}=-40^{\circ} \mathrm{F}=233.15 \mathrm{~K}=419.67^{\circ} \mathrm{R}
$$

$$
77^{\circ} \mathrm{F}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K}=536.67^{\circ} \mathrm{R}
$$

$$
698 \mathrm{~K}=424.85^{\circ} \mathrm{C}=796.73^{\circ} \mathrm{F}=1256.4^{\circ} \mathrm{R}
$$

$$
69.8^{\circ} \mathrm{R}=-234.37^{\circ} \mathrm{C}=-389.87^{\circ} \mathrm{F}=38.78 \mathrm{~K}
$$

${ }^{\circ} \mathbf{C}$	${ }^{\circ} \mathbf{F}$	\mathbf{K}	${ }^{\circ} \mathbf{R}$
-40	-40	233.15	419.67
25	77	298.15	536.67
424.85	796.73	698	1256.4
-234.37	536.67	38.78	69.8

In the production of a drug having a molecular weight of $192 \mathbf{~ k g} / \mathbf{k m o l}$, the exit stream from the reactor flows at a rate of $\mathbf{1 0 . 5} \mathrm{L} / \mathrm{min}$. The drug concentration is $\mathbf{4 1 . 2 \%}$ (in water), and the specific gravity of the solution is 1.024 . Calculate;
a) the concentration of the drug (in $\mathbf{k g} / \mathrm{L}$) in the exit stream, (Hint: assume that the amount of the total solution in the exit stream is 100 kg)
b) and the flow rate of the drug in $\mathbf{k g ~ m o l} / \mathrm{min}$.

Total exit stream amount 100 kg solution
Density of drug solution:

$$
\begin{gathered}
S G_{\text {solution }}=1.024=\frac{\rho_{\text {solution }}}{\rho_{\text {water }}} \\
\Rightarrow \rho_{\text {solution }}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 1.024=1024 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{gathered}
$$

The solution at the reactor exit contains \% 41.2 (41.2 wt \%) water by weight; Hence, there is 41.2 kg water and 58.8 kg drug in the solution.

Drug concentration in the drug solution

$$
1024 \frac{\mathrm{~kg} \text { solution }}{\mathrm{m}^{3}} \cdot \frac{58.8 \mathrm{~kg} \mathrm{drug}}{100 \mathrm{~kg} \text { solution }} \cdot \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}=0.602 \frac{\mathrm{~kg} \mathrm{drug}}{\mathrm{~L} \mathrm{solution}}
$$

Molar flow rate;

$$
\dot{n}=10.5 \frac{L \text { solution }}{\min } \cdot 0.602 \frac{\mathrm{~kg} \mathrm{drug}}{L \text { solution }} \cdot \frac{1 \mathrm{kmol} \mathrm{drug}}{192 \mathrm{~kg} \mathrm{drug}}=0.033 \frac{\mathrm{kmol} \mathrm{ilac}}{\min }
$$

