FACULTY OF ENGINEERING
DEPARTMENT OF CHEMICAL ENGINEERING

INTRODUCTION TO CHEMICAL ENGINEERING CEN 101

Assoc.Prof.Dr. Hakan KAYI

SAMPLE PROBLEMS WITH SOLUTIONS

A waste treatment pond is 50 m long and 15 m wide, and has an average depth of 2 m . The density of the waste is 85.3 $\mathrm{lbm} / \mathrm{ft}^{3}$. Calculate the weight of the pond contents in lbf.

Volume of the waste treatment pond
$\mathrm{V}=50 \mathrm{~m} \times 15 \mathrm{~m} \times 2 \mathrm{~m}=1500 \mathrm{~m}^{3}$

$$
1500 \mathrm{~m}^{3} \cdot \frac{35.288 \mathrm{ft}^{3}}{1 \mathrm{~m}^{3}}=52932 \mathrm{ft}^{3}
$$

Weight of the waste water
$\mathrm{W}=85.3 \mathrm{lbm} / \mathrm{ft}^{3} \times 52932 \mathrm{ft}^{3}=4515100 \mathrm{lbm}$
$4.515 \times 10^{6} \mathrm{lbm} \times 32.174 \mathrm{ft} / \mathrm{s}^{2}=116566 \mathrm{lbf}$

The specific gravity of gasoline is approximately 0.70
a) Determine the mass (kg) of 50 liters of gasoline. b) The mass flow rate of gasoline exiting a refinery tank is $1150 \mathrm{~kg} / \mathrm{min}$. Estimate the volumetric flow rate in $\mathrm{m}^{3} / \mathrm{min}$.

Reference density of water is assumed to be $1000 \mathrm{~kg} / \mathrm{m}^{3}$
Density of the gasoline;

$$
\begin{gathered}
S G_{\text {gasoline }}=0.7=\frac{\rho_{\text {gasoline }}}{\rho_{\text {ref }(\text { water })}} \\
\Rightarrow \rho_{\text {gasoline }}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 0.7=700 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{gathered}
$$

Mass of the 50 L gasoline;

$$
700 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 50 \mathrm{~L} \cdot \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}=35 \mathrm{~kg}
$$

Volumetric flow rate, $q\left(\mathrm{~m}^{3} / \mathrm{min}\right)$

$$
q=\frac{1150 \frac{\mathrm{~kg}}{\mathrm{~min}}}{700 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=1.64 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}
$$

A pressure gauge on a welder's tank gives a reading of 22.4 psig. The barometric pressure is $28.6 \mathrm{in} \mathbf{~ H g}$. Calculate the absolute pressure in the tank in;
a) $\mathrm{lbf} / \mathrm{ft}^{2}$.
b) $\mathrm{N} / \mathrm{m}^{2}$.

Absolute pressure in the tank is the sum of the gauge and atmospheric (barometric) pressures, and they should be in the same units.

Barometric pressure is 28.6 in Hg.

$$
P_{a t m}=28.6 \text { in. } \mathrm{Hg} \cdot \frac{1 \mathrm{psi}}{2.036 \mathrm{in} . \mathrm{Hg}}=14.05 \mathrm{psi}
$$

Absolute pressure in the tank :

$$
\begin{gathered}
P_{\text {absolute }}=14.05 \text { psi }+22.4 \text { psig }=36.45 \mathrm{psia} \\
P_{\text {absolute }}=36.45 \text { psi. } \frac{144 \frac{l b f}{f t^{2}}}{1 p s i}=5249 \frac{\mathrm{lbf}}{f^{2}} \\
P_{\text {absolute }}=36.45 \text { psi. } \frac{6894.75 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}}{1 p s i}=251314 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{gathered}
$$

The enthalpy values of the vapour phase of the saturated water vapour at different temperature are given in the table.

Calculate the enthalpy of the saturated vapour at $90^{\circ} \mathrm{C}$.

Table. Temperature-enthalpy values for saturated vapour

T, ${ }^{\circ} \mathrm{C}$	65	80	95	105
$\mathrm{H}, \mathrm{kJ} / \mathrm{kg}$	2618.3	2643.7	2668.1	2683.8

Enthalpy of water at $90^{\circ} \mathrm{C}$ cannot be read from the table directly. The desired enthalpy value is in the range of $2643.7-2668.1 \mathrm{~kJ} / \mathrm{kg}$, which corresponds to a temperature range of 80 to $95^{\circ} \mathrm{C}$.

It is assumed that the temperature changes linearly with the enthalpy in the $80-95^{\circ} \mathrm{C}$ temperature range and the value sought is calculated by interpolation.

$$
\begin{gathered}
x_{1}=80^{\circ} \mathrm{C} \quad \Rightarrow y_{1}=2643.7 \mathrm{~kJ} / \mathrm{kg} \\
x_{2}=95{ }^{\circ} \mathrm{C} \Rightarrow y_{2}=2668.1 \mathrm{~kJ} / \mathrm{kg} \\
x=90^{\circ} \mathrm{C} \quad \Rightarrow \quad y=? \\
H=2643.7+\frac{90-80\left({ }^{\circ} \mathrm{C}\right)}{95-80\left({ }^{\circ} \mathrm{C}\right)}(2668.1-2643.7)(\mathrm{kJ} / \mathrm{kg})=2660 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

