

FACULTY OF ENGINEERING DEPARTMENT OF CHEMICAL ENGINEERING

INTRODUCTION TO CHEMICAL ENGINEERING CEN 101

Assoc.Prof.Dr. Hakan KAYI

UNIT SYSTEMS

System International (SI)
m, kg, s, K
CGS
cm, g, s, K
FPS
ft, lb, s, R

METRIC PREFIXES

Prefix	Symbol	Multiplier	
exa	E	10^{18}	1,000,000,000,000,000,000
peta	Р	10 ¹⁵	1,000,000,000,000,000
tera	Т	10^{12}	1,000,000,000,000
giga	G	10 ⁹	1,000,000,000
mega	M	10 ⁶	1,000,000
kilo	k	10 ³	1,000
hecto	h	10^{2}	100
deka	da	10^{1}	10
deci	d	10^{11}	0.1
centi	C	10^{-2}	0.01
milli	m	10 ⁻³	0.001
micro	μ	10^{-6}	0.000,001
nano	n	10 ^{.9}	0.000,000,001
pico	р	10 ⁻¹²	0.000,000,000,001
femto	f	10 ⁻¹⁵	0.000,000,000,000,001
atto	а	10 ⁻¹⁸	0.000,000,000,000,000,001

SOME DEFINITIONS USED IN ENGINEERING CHEMICAL CALCULATIONS

Density: mass per unit volume of a substance, $\rho=m/V$ (kg/m³, g/cm³, lbm/ft³)

Specific volume: volume occupied by a unit mass of the substance (m³/kg, cm³/g, ft³/lbm).

Specific gravity: SG = ρ/ρ_{ref} ($\rho_{ref} = \rho_{H20} @ 4^{\circ}C$, 1.000 g/cm³, 1000 kg/m³, 62.43 lbm/ft³)

PROCESS VARIABLES

Variables used to characterize a process: Mass, volume, flow rate, chemical composition, concentration, pressure and temperature

PRESSURE = Force / Area

 $(N/m^2, dynes/cm^2).$

FLOW RATE

Most processes involve the movement of a material from one point to another, sometime between process units, sometimes between a production facility and depot.

The rate at which a material is transported through a process line is called **flow rate** of that material.

FLOW RATE MEASUREMENTS

