Cardiovascular Physiology

Prof.Dr.Çiğdem ALTINSAAT

- Functional components of the cardiovascular system:
 - Heart
 - Blood Vessels
 - Blood
- General functions these provide
 - Transportation
 - Everything transported by the blood
 - Regulation
 - Of the cardiovascular system
 - Intrinsic v extrinsic
 - Protection
 - Against blood loss
 - Production/Synthesis

Cardiovascular System Function

- To create the "pump" we have to examine the Functional Anatomy
 - Cardiac muscle
 - Chambers
 - Valves
 - Intrinsic Conduction System

Cardiac Muscle

- Characteristics
 - Striated
 - Short branched cells
 - Uninucleate
 - Intercalated discs
 - T-tubules larger and over z-discs

(b)

Chambers of the Heart

- 4 chambers
 - 2 Atria
 - -2 Ventricles
- 2 systems
 - Pulmonary
 - Systemic

Valves of the Heart

- Function is to prevent backflow
 - Atrioventricular Valves
 - Prevent backflow to the atria
 - Prolapse is prevented by the chordae tendinae
 - Tensioned by the papillary muscles
 - Semilunar Valves
 - Prevent backflow into ventricles

Intrinsic Conduction System

- Consists of "pacemaker" cells and conduction pathways
 - Coordinate the contraction of the atria and ventricles

Autorhythmic Cells (Pacemaker Cells)

- Characteristics of
 Pacemaker Cells
 - Smaller than contractile cells
 - Don't contain many myofibrils
 - No organized sarcomere structure
 - do not contribute to the contractile force of the heart

SA node cell

AV node cells

Autorhythmic Cells (Pacemaker Cells)

- Characteristics of Pacemaker Cells
 - Unstable membrane potential
 - "bottoms out" at -60mV
 - "drifts upward" to -40mV, forming a pacemaker potential
 - Myogenic
 - The upward "drift" allows the membrane to reach threshold potential (-40mV) by itself
 - This is due to
 - 1. Slow leakage of K⁺ out & faster leakage Na⁺ in
 - » Causes slow depolarization
 - Occurs through I_f channels (f=funny) that open at negative membrane potentials and start closing as membrane approaches threshold potential
 - 2. Ca²⁺ channels opening as membrane approaches threshold
 - » At threshold additional Ca²⁺ ion channels open causing more rapid depolarization
 - » These deactivate shortly after and
 - 3. Slow K⁺ channels open as membrane depolarizes causing an efflux of K⁺ and a repolarization of membrane

Characteristics of Pacemaker Cells

Copyright © 2009 Pearson Education, Inc.

Altering Activity of Pacemaker Cells

- Sympathetic activity
 - NE and E increase I_f channel activity
 - Binds to β_1 adrenergic receptors which activate cAMP and increase I_f channel open time
 - Causes more rapid pacemaker potential and faster rate of action potentials

Sympathetic Activity Summary:

increased dromotropic effects ↑conduction of APs

increased inotropic effects ↑contractility

Altering Activity of Pacemaker Cells

- Parasympathetic activity
 - ACh binds to muscarinic receptors
 - Increases K⁺ permeability and decreases Ca²⁺ permeability
 - = hyperpolarizing the membrane
 - » Longer time to threshold = slower rate of action potentials

Contractile Cells

- Special aspects
 - Intercalated discs
 - Highly convoluted and interdigitated junctions
 - Joint adjacent cells with
 - » Desmosomes & fascia adherens
 - Allow for synticial activity
 - » With gap junctions
 - More mitochondria than skeletal muscle
 - Less sarcoplasmic reticulum
 - Ca²⁺ also influxes from ECF reducing storage need
 - Larger t-tubules
 - Internally branching
 - Myocardial contractions are graded!

- Special aspects
 - The action potential of a contractile cell
 - Ca²⁺ plays a major role again
 - Action potential is longer in duration than a "normal" action potential due to Ca²⁺ entry
 - Phases
 - 4 resting membrane potential @ -90mV
 - 0 depolarization
 - » Due to gap junctions or conduction fiber action
 - » Voltage gated Na⁺ channels open... close at 20mV
 - 1 temporary repolarization
 - » Open K⁺ channels allow some K⁺ to leave the cell
 - 2 plateau phase
 - » Voltage gated Ca²⁺ channels are fully open (started during initial depolarization)
 - 3 repolarization
 - » Ca2+ channels close and K+ permeability increases as slower activated K+ channels open, causing a quick repolarization
 - What is the significance of the plateau phase?

Skeletal Action Potential vs Contractile Myocardial Action Potential

(a) Skeletal muscle fast-twitch fiber: The refractory period (yellow) is very short compared with the amount of time required for the development of tension.

- Plateau phase prevents summation due to the elongated refractory period
- No summation capacity = no tetanus

- Which would be fatal

TABLE 14-3

Comparison of Action Potentials in Cardiac and Skeletal Muscle

	SKELETAL MUSCLE	CONTRACTILE MYOCARDIUM	AUTORHYTHMIC MYOCARDIUM
Membrane potential	Stable at -70 mV	Stable at -90 mV	Unstable pacemaker potential; usually starts at –60 mV
Events leading to threshold potential	Net Na ⁺ entry through ACh- operated channels	Depolarization enters via gap junctions	Net Na ⁺ entry through I _f chan- nels; reinforced by Ca ²⁺ entry
Rising phase of action potential	Na ⁺ entry	Na ⁺ entry	Ca ²⁺ entry
Repolarization phase	Rapid; caused by K ⁺ efflux	Extended plateau caused by Ca ²⁺ entry; rapid phase caused by K ⁺ efflux	Rapid; caused by K ⁺ efflux
Hyperpolarization	Due to excessive K ⁺ efflux at high K ⁺ permeability when K ⁺ channels close; leak of K ⁺ and Na ⁺ restores potential to resting state	None; resting potential is –90 mV, the equilibrium poten- tial for K ⁺	Normally none; when repolariza- tion hits –60 mV, the I _f channels open again. ACh can hyperpolar- ize the cell.
Duration of action potential	Short: 1–2 msec	Extended: 200+ msec	Variable; generally 150+ msec
Refractory period	Generally brief	Long because resetting of Na ⁺ channel gates delayed until end of action potential	None

- Initiation
 - Action potential via pacemaker cells to conduction fibers
- Excitation-Contraction Coupling
 - Starts with CICR (Ca²⁺ induced Ca²⁺ release)
 - AP spreads along sarcolemma
 - T-tubules contain voltage gated L-type Ca²⁻ channels which open upon depolarization
 - Ca²⁺ entrance into myocardial cell and opens RyR (ryanodine receptors) Ca²⁺ release channels
 - Release of Ca²⁺ from SR causes a Ca²⁺ "spark"
 - Multiple sparks form a Ca²⁺ signal

- Excitation-Contraction Coupling cont...
 - 2. Ca²⁺ signal (Ca²⁺ from SR and ECF) binds to troponin to initiate myosin head attachment to actin
- Contraction
 - Same as skeletal muscle, but...
 - Strength of contraction varies
 - Sarcomeres are not "all or none" as it is in skeletal muscle
 - The response is graded!
 - » Low levels of cytosolic Ca²⁺ will not activate as many myosin/actin interactions and the opposite is true
 - Length tension relationships exist
 - Strongest contraction generated when stretched between 80 & 100% of maximum (physiological range)
 - What causes stretching?
 - » The filling of chambers with blood

Myocardial Physiology Contractile Cells

- Relaxation
 - Ca²⁺ is transported back into the SR and
 - Ca²⁺ is transported out of the cell by a facilitated Na⁺/Ca²⁺ exchanger (NCX)
 - As ICF Ca²⁺ levels drop, interactions between myosin/actin are stopped
 - Sarcomere lengthens

Cardiac Cycle

- Cardiac cycle is the sequence of events as blood enters the atria, leaves the ventricles and then starts over
- Synchronizing this is the Intrinsic Electrical Conduction System
- Influencing the rate (chronotropy & dromotropy) is done by the sympathetic and parasympathetic divisions of the ANS

- Electrical Conduction Pathway
 - Initiated by the Sino-Atrial node (SA node) which is myogenic at 70-80 action potentials/minute
 - Depolarization is spread through the atria via gap junctions and internodal pathways to the Atrio-Ventricular node (AV node)
 - The fibrous connective tissue matrix of the heart prevents further spread of APs to the ventricles
 - A slight delay at the AV node occurs
 - Due to slower formation of action potentials
 - Allows further emptying of the atria
 - Action potentials travel down the Atrioventricular bundle (Bundle of His) which splits into left and right atrioventricular bundles (bundle branches) and then into the conduction myofibers (Purkinje cells)
 - Purkinje cells are larger in diameter & conduct impulse very rapidly
 - Causes the cells at the apex to contract nearly simultaneously
 - » Good for ventricular ejection

- The electrical system gives rise to electrical changes (depolarization/repolarization) that is transmitted through isotonic body fluids and is recordable
 - The ECG!
 - A recording of electrical activity
 - Can be mapped to the cardiac cycle

Copyright © 2009 Pearson Education, Inc.

Cardiac Cycle Phases

- Systole = period of contraction
- Diastole = period of relaxation
- Cardiac Cycle is alternating periods of systole and diastole
- Phases of the cardiac cycle
 - 1. Rest
 - Both atria and ventricles in diastole
 - Blood is filling both atria and ventricles due to low pressure conditions
 - 2. Atrial Systole
 - Completes ventricular filling
 - 3. Isovolumetric Ventricular Contraction
 - Increased pressure in the ventricles causes the AV valves to close...
 - Creates the first heart sound (lub)
 - Atria go back to diastole
 - No blood flow as semilunar valves are closed as well

- Phases of the cardiac cycle
 - 4. Ventricular Ejection
 - Intraventricular pressure overcomes aortic pressure
 - Semilunar valves open
 - Blood is ejected
 - 5. Isovolumetric Ventricular Relaxation
 - Intraventricular pressure drops below aortic pressure
 - Semilunar valves close = second heart sound (dup)
 - Pressure still hasn't dropped enough to open AV valves so volume remains same (isovolumetric)

Back to Atrial & Ventricular Diastole

Cardiac Cycle Blood Volumes & Pressure

