PART I: Acids & Bases

Several concepts of acid-base theory:

The Arrhenius concept The Bronsted-Lowry concept The Lewis concept

According to the <u>Arrhenius</u> concept of acids and bases

An acid is a substance that, when dissolved in water, increases the concentration of Hydrogen ion, H⁺(aq)

The H⁺(aq) ion, called the Hydrogen ion is actually chemically bonded to water, that is, H₃O⁺, called the Hydronium ion

A base is a substance that when dissolved in water increases the concentration of the Hydroxide ion, OH⁻(aq)

An Arrhenius acid is any substance which *increases* the concentration of Hydrogen ions (H⁺) in solution. Acids generally have a <u>sour taste</u>

$HBr(aq) \rightarrow H^+(aq) + Br^-(aq)$

An Arrhenius base is any substance which *increases* the concentration of Hydroxide ions (OH⁻) in solution. Bases generally have a <u>bitter taste</u>

$KOH(s) \rightarrow K^+(aq) + OH^-(aq)$

Hydrogen and Hydroxide ions are important in aqueous solutions because - Water reacts to form both ions
 H₂O(I) ↔ H⁺(aq) + OH⁻(aq)

HBr and KOH are examples of a *strong acid* and a *strong base*; strong acids & bases <u>dissociate</u> <u>completely</u>

Monoprotic acids are those acids that are able to donate one proton per molecule during the process of <u>dissociation</u> (sometimes called ionization) as shown below (symbolized by HA):

$HA(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + A^-(aq)$

Common examples of monoprotic acids in <u>mineral acids</u> include Hydrochloric Acid (HCl) and Nitric Acid (HNO₃)

Polyprotic acids are able to donate more than one proton per acid molecule.

 > Diprotic acids have two potential protons to donate H₂A(aq) + H₂O(I) ⇒ H₃O⁺(aq) + HA⁻(aq)
 > Triprotic acids have three potential protons to donate H₃A(aq) + H₂O(I) ⇒ H₃O⁺(aq) + H₂A⁻(aq)

Oxoacids Oxoacids with one oxygen have the structure: HOY HOCI HOBr HOI Oxoacids with multiple oxygen have the structure: (OH)_mYO_n HOCIO₃ (HCIO₄) HOCIO₂ (HOCLO₃) HOCIO (HCLO₂) HOCL (HCIO)

The more oxygen atoms, the <u>greater the acidity</u>; thus $HOCLO_3$ is a stronger acid than HOCI<u>Acidity</u> refers to the relative <u>acid strength</u>, i.e. the degree to which the acid <u>dissociates</u> to form H⁺ (H₃O⁺) & OH⁻ Bronsted-Lowry Acids & Bases

- Brønsted-Lowry Concept of Acids and Bases
 - In the Brønsted-Lowry concept:
 - An Acid is a species that <u>donates protons</u>
 - A Base is a species that <u>accepts protons</u>
 - Acids and bases can be ions as well as molecular substances
 - Acid-base reactions are not restricted to aqueous solution
 - Some species can act as either acids or bases (Amphoteric species) depending on what the other reactant is

Bronsted-Lowry Acids & Bases

Amphoteric Species

- A species that can act as either an acid or base is: Amphoteric
- Water is an important amphoteric species in the acidbase properties of aqueous solutions
 - Water can react as an acid by donating a proton to a base

 $\frac{\mathrm{NH}_{3}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{O}(\mathrm{l})}{\mathrm{H}^{+}} \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq}) + \mathrm{OH}^{-}(\mathrm{aq})}$

Water can also react as a base by accepting a proton from an acid

 $\frac{\mathrm{HF}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{O}(\mathrm{l})}{\mathrm{H}^{+}} \rightarrow F^{-}(\mathrm{aq}) + \mathrm{H}_{3}\mathrm{O}^{+}(\mathrm{aq})$

Bronsted-Lowry Acids & Bases
 Brønsted-Lowry Concept of Acids and Bases
 Proton transfer as the essential feature of a

Brønsted-Lowry acid-base reaction

Bronsted-Lowery Concept – Conjugate Pairs

> In Bronsted theory, acid and base reactants form:

Conjugate Pairs

The acid (HA) donates a proton to water leaving the conjugate Base (A⁻)

The base (H₂O) accepts a proton to form the conjugate acid (H₃O⁺)

 $\begin{array}{rcl} \mathsf{HA}(\mathsf{aq}) &+& \mathsf{H}_2\mathsf{O}(\mathsf{I}) &\rightleftharpoons & \mathsf{A}^-(\mathsf{aq}) &+& \mathsf{H}_3\mathsf{O}^+(\mathsf{aq}) \\ && \mathsf{Acid} & \mathsf{Base} & \mathsf{Conjugate} & \mathsf{Conjugate} \\ && \mathsf{Base} & \mathsf{Acid} \end{array}$

Bronsted-Lowery Acid-Base Conjugate Pairs

- Conjugate acid-base pairs are shown connected
- Every acid has a conjugate base
- Every base has a conjugate acid
- The conjugate base has one fewer H and one more "minus" charge than the acid
- The conjugate acid has one more H and one fewer minus charge than the base

Bronsted-Lowry Acids & Bases
 Bronsted-Lowery Acid-Base Conjugate Pairs

Bronsted-Lowry Acids & Bases Bronsted-Lowery Acid-Base Conjugate Pairs

Bronsted-Lowry Acids & Bases

- Bronsted_Lowry Concept <u>The Leveling Effect</u>
 - > All Bronsted_Lowry acids yield H_3O^+ ions (Cation)
 - All Bronsted_Lowry bases yield OH⁻ ions (Anion)
 - All strong acids are <u>equally strong</u> because all of them form the strongest acid possible - H₃O⁺
 - Similarly, all strong bases are equally strong because they form the strongest base possible - OH⁻
 - Strong acids and bases <u>dissociate completely</u> yielding H₃O⁺ and OH⁻
 - > Any acid stronger than H_3O^+ simply donates a proton to H_2O
 - > Any base stronger than OH^2 simply accepts proton from H_2O
 - Water exerts a <u>leveling effect</u> on any strong acid or base by reacting with it to <u>form water ionization</u> <u>products</u>

Practice Problem

■ Identify the conjugate acid-base pairs in the following: $H_2PO_4^-(aq) + CO_3^{-2}(aq)$ □ $HCO_3^-(aq) + HPO_4^{-2}(aq)$ Base Conjugate Acid Acid Conjugate base

 $H_2PO_4^-$ has one more H⁺ than HPO_4^{-2-} and CO_3^{-2-} has one fewer H⁺ than HCO_3^{-2-}

 $H_2PO_4^-$ & HCO_3^- are acids HPO_4^{-2-} & CO_3^{-2-} are bases

 $H_2PO_4^{-}/HPO_4^{-2-}$ is a conjugate acid - base pair HCO₃⁻/CO₃⁻²⁻ is a conjugate acid - base pair

Lewis Acids & Bases

- Some acid base reactions don't fit the Bronsted-Lowry or Arrhenius classifications
- The Lewis acid-base concepts expands the acid class
- Such reactions involve a "sharing" of electron pairs between atoms or ions
- Lewis Acid An electron <u>deficient</u> species (Electrophile) that accepts an electron pair
- Lewis Base An electron <u>rich</u> species (Nucleophile) that donates an electron pair

Lewis Acids & Bases

- Species that do not contain Hydrogen in their formulas, such as CO₂ and Cu⁺⁺ function as Lewis acids by accepting an electron pair
- The donated proton of a Bronsted-Lowry acid acts as a Lewis acid by accepting an electron pair donated by the base:
 - The Lewis acids are <u>Yellow</u> and the Lewis bases are <u>Blue</u> in following reaction

4/28/2019

Lewis Acids & Bases

Solubility Effects

A Lewis acid-base reaction between nonpolar Diethyl Ether and normally insoluble Aluminum Chloride

The solubility of Aluminum Chloride in Dimethyl Ether results from the Oxygen acting as a base by donating an electron pair to the Aluminum acting as an acid forming a water-soluble polar covalent bond

PART II: Acids & Bases

- Self Ionization of Water
- Pure water undergoes auto-ionization to produce Hydronium and Hydroxide ions

 $2 H_2O(l) \leftrightarrow H_3O^+(aq) + OH^-(aq)$

- The extent of this process is described by an autoionization (ion-product) constant, K_w $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$
- The concentrations of Hydronium and Hydroxide ions in any aqueous solution must obey the auto-ionization equilibrium

Classification of solutions using K_w:

Acidic:	[H ₃ O ⁺] >		[OH ⁻]
Basic:	[H ₃ O+]	<	[OH ⁻]
Neutral:	[H ₃ O+] =	_	[OH ⁻]

- Because of the auto-ionization constant of water, the amounts of Hydronium and Hydroxide ions are always related
 - For example, pure water at 25 °C,

 $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ $[H_3O)^+] = [OH^-] = 1.0 \times 10^{-7}$

- The Definition of pH
 - The amount of Hydronium ion (H₃O⁺) in solution is often described by the pH of the solution

 $pH = -\log[H_3O^+]$ $[H_3O^+] = 1 \times 10^{-pH}$

The Definition of pOH

> Hydroxide (OH⁻) can be expressed as pOH pOH = $-\log_{10}[OH^{-}]$ [OH⁻] = 1×10^{-pOH}

pH scale ranges from 0 to 14

> The pH of pure water = $-\log(1.00 \times 10^{-7}) = 7.00$

 $pH = 0.00 - 6.999^+ = acidic [H_3O^+] > [OH^-]$

pH = 7.00 = neutral $[H_3O^+] = [OH^-]$

 $pH = 7.00^+ - 14.00 = basic [H_3O^+] < [OH^-]$

Acidic solutions have a lower pH (higher [H₃O⁺] and a higher pOH (lower [OH⁻] than basic solutions

Acids & Bases Relations among pH, pOH, and pK_w $K_{w} = [H_{3}O^{+}][OH^{-}] = 1.0 \times 10^{-14}$ $-\log(K_w) = -\log([H_3O^+][OH^-]) = -\log(1 \times 10^{-14})$ $-\log(K_w) = -\log[H_3O^+] - \log[OH^-] = -\log(1 \times 10^{-14})$ $pK_w = pH + pOH = 14$ (at $25^{\circ}C$) Equilibrium & Acid-Base Conjugates

- Equilibrium Constants (K) for acids & bases can also be expressed as pK
 - Reaction of an Acid (HA) with water as a base

Equilibrium & Acid-Base Conjugates $\mathbf{K}_{w} = \mathbf{K}_{u} \times \mathbf{K}_{w}$ $-\log(K_w) = -\log([K_a][K_b])$ $-\log(K_w) = -\log[K_a] - \log[K_h]$ $pK_w = pK_a + pK_h = 14$ (at $25^{\circ}C$) $pK_w = pH + pOH = 14$ (at $25^{\circ}C$)

From this relationship, K_a of the acid in a conjugate pair can be computed from K_b and vice versa

Reference tables typically have K_a & K_b values for molecular species, <u>but not for ions</u> such as F- or CH₃NH₃⁺

Equilibrium & Acid-Base Conjugates > Acid strength $[H_3O^+]$ increases with increasing value of K_a $K_a = \frac{[H_3O^+][A^-]}{[HA]}$ Base strength $[OH^-]$ increases with increasing value of k_h $\mathbf{K}_{\mathbf{b}} = \frac{[\mathbf{HA}][\mathbf{OH}^{-}]}{[\mathbf{A}^{-}]}$ > A low pK corresponds to a high value of K

 $\mathbf{pK}_{\mathbf{a}} = -\log_{10}[\mathbf{K}_{\mathbf{a}}]$

 $\mathbf{p}\mathbf{K}_{\mathbf{b}} = -\mathbf{log}_{10}[\mathbf{K}_{\mathbf{b}}]$

A reaction that reaches equilibrium with mostly products present (proceeds to far right) has a "low pK" (high K)

The pH Scale

PART III: Acids & Bases

Strong Acids & Bases

 Strong acids and bases dissociate completely in aqueous solutions
 Strong acids: HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄
 Strong bases: all Group I & II Hydroxides NaOH, KOH, Ca(OH)₂, Mg(OH)₂

The term strong has nothing to do with the concentration of the acid or base, but rather the <u>extent of dissociation</u>

In the case of HCl, the dissociation lies very far to the right because the conjugate base (Cl⁻) is extremely weak, much weaker than water

 $HCl(aq) + H_2O(I) \rightarrow H_3O^+(aq) + Cl^-(aq)$

H₂O is a much stronger base than Cl⁻ and "out competes it" for available protons

Relative Strengths of Acids and Bases							
	Acid	Base					
Strongest	HClO ₄	ClO ₄ ⁻	Weakest				
acids	H_2SO_4	HSO_4^-	bases				
	HI	I	Î				
	HBr	Br ⁻					
	HCl	Cl ⁻					
	HNO ₃	NO ₃ ⁻					
	H_3O^+	H ₂ O					
	HSO_4^-	SO_4^{2-}					
	H_2SO_3	HSO ₃ ⁻					
	H ₃ PO ₄	$H_2PO_4^-$					
	HNO ₂	NO_2^-					
	HF	F^{-}					
	$HC_2H_3O_2$	$C_2H_3O_2^-$					
	$Al(H_2O)_6^{3+}$	$Al(H_2O)_5OH^{2+}$					
	H_2CO_3	HCO ₃ ⁻					
	H_2S	HS ⁻					
	HCIO	C10 ⁻					
	HBrO	BrO ⁻					
	NH_4^+	NH ₃					
	HCN	CN ⁻					
	HCO ₃ ⁻	CO_{3}^{2-}					
	H_2O_2	HO_2^-					
	HS ⁻	S^{2-}					
Weakest acids	H ₂ O	OH-	Strongest bases				

Activity Series

Strengths of acids and bases

Strength determined by K, not concentration

PART IV: Weak Acid Equilibria Problems

- Solving Problems involving Weak-Acid Equilibria
 - > Types
 - Given equilibrium concentrations, find K_a
 - Given K_a and some concentrations, find other concentrations
 - > Approach
 - Determine "Knowns" and "Unknowns"
 - Write the Balanced Equation
 - Set up equilibrium expression $K_a = \frac{[C]^c [D]^d \dots}{[A]^a [B]^b \dots}$

Define "x" as the unknown change in [HA] • Typically, $x = [A]_{diss}$ (conc. of HA that dissociates) $x = [A]_{diss} = [H_3O^+] = [A^-]$

Weak Acid Equilibria Problems

- Construct a "Reaction" table
- Make assumptions that simplify calculations
 - Usually, "x" is <u>very small</u> relative to initial concentration of HA
 - Assume [HA]_{init} ≈ [HA]_{eq} & Apply 5% rule
 If "x" < 5% [HA]_{init} ; assumption is valid
- Substitute values into K_a expression, solve for "x"
- The Notation System
 - Brackets [HA]; [HA]_{diss}; [H₃O⁺] indicate "Molar" concentrations
 - Bracket with "no" subscript refers to molar concentration of species at equilibrium

Weak Acid Equilibria Assumptions

Assumptions

- $\mathbf{HA}(\mathbf{aq}) + \mathbf{H}_2\mathbf{O}(\mathbf{l}) \Box = \mathbf{H}_3\mathbf{O}^+(\mathbf{aq}) + \mathbf{A}^-$
- The [H₃O⁺] from the "autoionization" of water is "Negligible"

It is much smaller that the $[H_3O^+]$ from the dissociation of HA

 $[H_3O^+] = [H_3O^+]_{from HA} + [H_3O^+]_{from H_2O} \approx [H_3O^+]_{from HA}$

A weak acid has a small K_a

Therefore, the change in acid concentration can be neglected in the calculation of the equilibrium concentration of the acid

 $[HA] = [HA]_{init} - [HA]_{dissoc} \approx [HA]_{init}$

Weak Acid Equilibria Assumptions

Assumption Criteria - 2 approaches
HA(aq) + H₂O(l) □ H₃O⁺(aq) + A⁻
K = $\frac{[H_3O^+][A^-]}{[HA]}$

> For K_c relative to $[HA]_{init}$ (or K_p relative to $P_{A(init)}$)

if $\frac{[HA]_{init}}{Kc} > 400$, the assumption [HA] $\approx [Ha]_{init}$ is justified Neglecting x introduces an error < 5%

if $\frac{[HA]_{init}}{Kc}$ < 400, the assumption [HA] \approx [HA]_{init} is not justified Neglecting x introduces an error > 5%

For [HA]_{diss} relative to [HA]_{init}

if $[HA]_{diss} < 5\% [HA]_{init}$, the assumption ($[HA] \approx [HA]_{init}$) is valid

Weak Acid Equilibria

Effect of Concentration on Extent of Acid Dissociation

Case 1: $[HPr]_{init} = 0.10 M$

 $K_a = \frac{[H_3O^+][Pr^-]}{[HPr]} = 1.3 \times 10^{-5} \approx \frac{(x)(x)}{0.10}$ $x = 1.1 \times 10^{-3} M = [H_3 O^+] = [Pr^-] = [HPr]_{diss}$ % $HA_{diss} = \frac{[HPr]_{diss}}{[HPr]_{init}} = \frac{1.1 \times 10^{-3} M}{1.0 \times 10^{-1} M} \times 100 = 1.1\%$ Case 2: $[HPr]_{init} = 0.01 M$ $x = 3.6 \times 10^{-4} M = [H_3 O^+] = [Pr^-] = [HPr]_{diss}$ % HA_{diss} = $\frac{3.6 \times 10^{-4} M}{1.0 \times 10^{-2} M} \times 100 = 3.6\%$

<u>As the concentration decreases the percent dissociation increases</u> 4/28/2019

34

Weak Acid Equilibria

Polyprotic Acids

- Acids with more than one ionizable proton are polyprotic acids.
- One proton at a time dissociates from the acid molecule
- Each dissociation step has a <u>different</u> K_a

 $H_3PO_4(aq) + H_2O(l) \Leftrightarrow H_2PO_4^- + H_3O^+(aq)$ $K_{a1} = \frac{[H_2PO_4^-][H_3O^+]}{[H_3PO_4]} = 7.2 \times 10^{-3}$

 $H_2PO_4^{-}(aq) + H_2O(I) \leftrightarrows HPO_4^{-2} + H_3O^{+}(aq)$

$$K_{a2} = \frac{[HPO_4^{-2}][H_3O^+]}{[H_2PO_4^{-1}]} = 6.3 \times 10^{-8}$$

 $HPO_4^{-2}(aq) + H_2O(I) \implies PO_4^{-3} + H_3O^+(aq)$

$$K_{a3} = \frac{[PO_4^{-3}][H_3O^+]}{[HPO_4^{-1}]} = 4.2 \times 10^{-13}$$

Weak Acid Equilibria

Successive <i>K</i> _a Values for Some Polyprotic Acids at 25°C							
Name (Formula)	Lewis Structure*	K _{a1}	K _{a2}	K _{a3}			
Oxalic acid (H ₂ C ₂ O ₄)	:0: :0: ШШ H—Ö—C—C—Ö—Н	5.6×10 ⁻²	5.4×10^{-5}				
Sulfurous acid (H ₂ SO ₃)	ю: Ш н—ё—ё—ё—н	1.4×10^{-2}	6.5×10^{-8}				
Phosphoric acid (H ₃ PO ₄)	:0: Ш Н—Ӧ—Р—Ӧ—Н ! :О́—Н	7.2×10^{-3}	6.3×10^{-8}	4.2×10^{-13}	RENGTH		
Arsenic acid (H ₃ AsO ₄)	:O: H—Ö.—Аs—Ö.—Н ! :О.—Н	6×10 ⁻³	1.1×10 ⁻⁷	3×10 ⁻¹²	ACID STF		
Carbonic acid (H ₂ CO ₃)	:0: Ш Н—ё—с—ё—н	4.5×10^{-7}	4.7×10 ⁻¹¹				
Hydrosulfuric acid (H ₂ S)	н— <u>ё</u> —н	9×10^{-8}	1×10^{-17}				

Successive dissociation equilibrium constants (Ka) for polyprotic acids have significantly lower values Ka1 >> Ka2 >> Ka3 Weak Bases & Relation to Weak Acids
Base – Any species that accepts a proton (Bronsted)
In water the base accepts a proton from water acting as an acid (water is amphoteric) and leaves behind a OH⁻ ion B(aq) + H₂O(I) BH⁺(aq) + OH⁻(aq)

 $\mathbf{K}_{\mathbf{c}} = \frac{[\mathbf{B}\mathbf{H}^+][\mathbf{O}\mathbf{H}^-]}{[\mathbf{B}][\mathbf{H}_2\mathbf{O}]}$

The water term is treated as a constant in aqueous reactions and is incorporated into the value of K_c

$$K_{c}[H_{2}O] = K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$
$$pK_{b} = -\log K_{b}$$

Base strength increases with increasing K_b (pK_b deceases)

Weak Base Equilibria

Ammonia is the simplest Nitrogen-containing compound that acts as a weak base in water

 $\overline{\mathrm{NH}_3(\mathrm{aq})} + \mathrm{H}_2\mathrm{O}(\mathrm{I})$ \Box $\overline{\mathrm{NH}_4^+(\mathrm{aq})} + \mathrm{OH}^-(\mathrm{aq})$

Ammonium Hydroxide (NH₄OH) in aqueous solution consists largely of unprotonated NH₃ molecules, as its small K_b indicates:

$$\mathbf{K}_{\mathbf{b}} = \frac{\left[\mathbf{NH}_{4}^{+}\right]\left[\mathbf{OH}^{-}\right]}{\left[\mathbf{NH}_{3}\right]\left[\mathbf{H}_{2}\mathbf{O}\right]} = \frac{\left[\mathbf{NH}_{4}^{+}\right]\left[\mathbf{OH}^{-}\right]}{\left[\mathbf{NH}_{3}\right]}$$
$$\mathbf{K}_{\mathbf{b}} = 1.76 \times 10^{-5}$$

Weak Base Equilibria In a 1.0 M NH₃ solution: [OH⁻] = [NH₄⁺] = 4.2 x 10⁻³ M The NH₃ is about 99.58% undissociated If one or more of the Hydrogen atoms in ammonia is replaced by an "organic" group (designated as R), an "Amine" results:

The Nitrogen atom in each compound has a "lone-pair" of unbonded electrons, a Bronsted Base characteristic, i.e., the electron pair(s) can accept protons

Weak Base Equilibria

Anions of Weak Acids & Bases The anions of weak acids are Bronsted-Lowry bases $A^{-}(aq) + H,O(l) \square HA(aq) + OH^{-}(aq)$ **Base** (A^{-}) accepts a proton from water to form conjuste acid (HA) $\mathbf{F}^{-}(\mathbf{aq}) + \mathbf{H}_{2}\mathbf{O}(\mathbf{l}) \square = \mathbf{HF}(\mathbf{aq}) + \mathbf{OH}^{-}(\mathbf{aq})$ $\mathbf{K}_{\mathbf{b}} = \frac{[\mathbf{HF}][\mathbf{OH}^{-}]}{[\mathbf{F}^{-}]}$ **F**, anion of weak acid HF, acts as weak base and accepts a proton to form HF

Anions of Weak Acids & Bases
The acidity of HF vs F⁻

- > HF is a weak acid, very little dissociates
- > Very little H_3O^+ and F^- produced HF(aq) + $H_2O(l) \square H_3O^+(aq) + F^-(aq)$
- Water autoionization also contributes H₃O⁺ and OH⁻, but in much smaller amounts than H₃O⁺ from HF 2H₂O(I) □ H₃O⁺(aq) + OH⁻(aq)
 The Acidity of a solution is influenced mainly by the H₃O⁺ from HF and OH⁻ from water
 [H₃O⁺]_{from HF} >> [OH⁻]_{from HO} (solution acidic)

Anions of Weak Acids & Bases Basicity of A⁻(aq) Consider 1 M solution of NaF > Salt dissociates completely to yield stoichiometric concentrations of F⁻, assume Na⁺ is spectator ion \succ Some of the F⁻ reacts with water to form OH⁻ $F(aq) + H,O(l) \square HF(aq) + OH(aq)$ $\mathbf{K}_{\mathbf{b}} = \frac{[\mathbf{HF}][\mathbf{OH}^{-}]}{[\mathbf{F}^{-}]}$ \succ Water autoionization also contributes H₃O⁺ and OH⁻, but in much smaller amounts than OH⁻ from reaction of F^- and H_2O 2H,O(I) \Box H,O⁺(aq) + OH⁻(aq) $[OH^-]_{\text{from }F^-} >> [H_3O^+]_{\text{from }H,O}$ (solution basic)

Anions of Weak Acids & Bases Summary \succ The relative concentration of HA & A⁻ determine the acidity or basicity of the solution In an HA solution, [HA] >> [A⁻] and $[H_3O^+]_{\text{from HA}} >> [OH^-]_{\text{from H}_3O^+}$ "Solution is Acidic" • In an A⁻ solution, [A⁻] >> [HA] and $[OH^-]_{\text{from }A^-} >> [H_3O^+]_{\text{from }H_3O^+}$ "Solution is Basic"

Acid Strength

- Trends in Acid Strength of Nonmetal Hydrides
- As the electronegativity of the nonmetal (E) bonded to the ionizable proton increases (left to right), the acidity increases
- As the length of the E-H bond increases (top to bottom), the bond strength decreases, so the acidity increases
- The "strong" monoprotic halide acids (HCl, HBr, HI) are equally strong <u>Note: (HF) is a weak</u> acid)

Acid Strength in Oxoacids

Oxoacids

- An Oxoacid is an acid that contains Oxygen
- > To be more specific, it is an acid that:
 - contains oxygen
 - contains at least one other element (S, N, X)
 - has at least one Hydrogen atom (acid hydrogen) bound to oxygen
 - forms an ion by the loss of one or more protons
 - acidity of an Oxoacid is not related to bond strength as in nonmetal hydrides

Acid Strength in Oxoacids Oxoacids with 1 Oxygen - HOE structure: The more electronegative is E, the stronger the acid Acid Strength: HOCl > HOBr > HOI Oxoacids with multiple Oxygens - (OH)_mEO_n structure The more Oxygen atoms, the greater the acidity $HOCIO_3$ ($HCIO_4$) > $HOCIO_2$ ($HCLO_3$) > $HOCIO (HCLO_2) > HOCL (HCIO)$

Acid Strength in Oxoacids

For oxoacids with the same number of oxygen atoms around E, acid strength increases with the electronegativity of E

 $K_a(HOCI) = 2.9 \times 10^{-8} > K_a(HOBr) = 2.3 \times 10^{-9} > K_a(HOI) = 2.3 \times 10^{-11}$

- For oxoacids with different numbers of oxygen atoms around a <u>given</u> E, acid strength increases with the number of oxygen atoms.
 - K_a (HOCl Hypochorous acid) = 2.9×10^{-8} (Weak)
 - K_a (HOCLO Chlorous acid) = 1.12×10^{-2}
 - K_a (HOCLO₂ Chloric acid) ≈ 1
 - K_a (HOCLO₃ Perchloric acid) = > 10⁷ (Strong)

Acid-Base Properties – Salt Solutions Neutral Salt Solutions

Salts consisting of the Anion of a <u>Strong Acid</u> and the Cation of a <u>Strong Base</u> yield a neutral solutions because the ions do not react with water

 $HNO_3(l) + H_2O(l) \rightarrow NO_3^-(aq) + H_3O^+(aq)$ Nitrate (NO_3^-) is a weaker base than water (H_2O) ; reaction goes to completion as the NO_3^- becomes fully hydrated; does not react with water

NaOH(s) $\xrightarrow{H_{1}O(1)}$ Na⁺(aq) + OH⁻(aq) Sodium becomes full hydrated; does not react with water NaNO₃(s) $\xrightarrow{H_{2}O}$ Na⁺(aq) + NO₃⁻(aq) + H₃O⁺(aq) + OH⁻(aq) Na⁺ & NO₃⁻ do not react with water, leaving just the "autoionization of water, i.e., a neutral solution 2H₂O \square H₃O⁺ + OH⁻

Acid-Base Properties – Salt Soln

Salts that produce Acidic Solutions

- A salt consisting of the anion of a strong acid and the cation of a weak base yields an acidic solution
 - The cation acts as a weak acid
 - The anion does not react with water (previous slide)
 - In a solution of NH₄Cl, the NH₄⁺ ion that forms from the weak base, NH₃, is a <u>weak acid</u>
 - The Chloride ion, the anion from a strong acid does not react with water

 $NH_4Cl(s) + H_2O \xrightarrow{H_2O} NH_4^+(aq) + Cl^ NH_4^+(aq) + H_2O \square NH_3(aq) + H_3O^+ (Acidic)$

Acid-Base Properties – Salt Soln

- Salts that produce Basic Solutions
 - A salt consisting of the anion of a weak acid and the cation of a strong base yields a basic solution
 - > The anion acts as a weak base
 - The cation does not react with water
 - The anion of the weak acid accepts a proton from water to yield OH⁻ ion, producing a "Basic" solution

 $\begin{array}{rcl} CH_{3}COONa(s) &+& H_{2}O & \stackrel{H_{2}O}{\longrightarrow} & Na^{+}(aq) &+& CH_{3}COO^{-}(aq) \\ & & (dissoluton \& hydration) \end{array}$

 $\begin{array}{rcl} CH_{3}COO^{-} + H_{2}O(I) & \Box & CH_{3}COOH(aq) + & OH^{-} & (Basic) \\ & & (reaction of weak base - Acetate Anion)) \end{array}$

Salts of Weakly Acidic Cations and Weakly Basic Anions

Overall acidity of solution depends on relative acid strength (K_a) or base strength (K_b) of the separated ions Ex. NH₄CN - Acidic or Basic? Write equations for any reactions that occur between the separated ions and water

 $\mathbf{NH}_{4}^{+}(\mathbf{aq}) + \mathbf{H}_{2}\mathbf{O}(\mathbf{l}) \square \mathbf{NH}_{3}(\mathbf{aq}) + \mathbf{H}_{3}\mathbf{O}^{+}$ $\mathbf{CN}^{*}(\mathbf{aq}) + \mathbf{H}_{2}\mathbf{O}(\mathbf{l}) \square \mathbf{HCN}(\mathbf{aq}) + \mathbf{OH}^{*}$

Salts of Weakly Acidic Cations and Weakly Basic Anions

■ Ex. NH₄CN - Acidic or Basic? (Con't) Compare K_a of NH₄⁺ & K_b of CN⁻ Recall: Molecular compounds only in tables of K_a & K_b $K_{a} \text{ of } NH_{4}^{+} = \frac{K_{w}}{K_{a} \text{ of } NH_{a}} = \frac{1.0 \times 10^{-10}}{1.76 \times 10^{-5}} = 5.7 \times 10^{-10}$ K_b of CN⁻ = $\frac{K_w}{K_w} = \frac{1.0 \times 10^{-14}}{6.2 \times 10^{-5}} = 1.6 \times 10^{-5}$ Magnitude of K_b ($K_b > K_a$) (1.6 x 10⁻⁵ / 5.7 x 10⁻¹⁰ = 3 x 10⁴) K_b of $CN^- >> K_a$ of NH_4^+ Solution is Basic Acceptance of proton from H₂O by CN⁻ proceeds much further than the donation of a proton to H_2O by NH_4^+