PART I: Acids \& Bases

- Several concepts of acid-base theory:

The Arrhenius concept

The Bronsted-Lowry concept
The Lewis concept

Acids \& Bases

- According to the Arrhenius concept of acids and bases

An acid is a substance that, when dissolved in water, increases the concentration of Hydrogen ion, $\mathrm{H}^{+}(\mathrm{aq})$

- The $\mathrm{H}^{+}(\mathrm{aq})$ ion, called the Hydrogen ion is actually chemically bonded to water, that is, $\mathrm{H}_{3} \mathrm{O}^{+}$, called the Hydronium ion

A base is a substance that when dissolved in water increases the concentration of the Hydroxide ion, OH-(aq)

Acids \& Bases

- An Arrhenius acid is any substance which increases the concentration of Hydrogen ions $\left(\mathrm{H}^{+}\right)$in solution. Acids generally have a sour taste

$$
\mathrm{HBr}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})
$$

- An Arrhenius base is any substance which increases the concentration of Hydroxide ions $\left(\mathrm{OH}^{-}\right)$in solution. Bases generally have a bitter taste

$$
\mathrm{KOH}(\mathrm{~s}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- Hydrogen and Hydroxide ions are important in aqueous solutions because - Water reacts to form both ions

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- HBr and KOH are examples of a strong acid and a strong base; strong acids \& bases dissociate completely

Acids \& Bases

- Monoprotic acids are those acids that are able to donate one proton per molecule during the process of dissociation (sometimes called ionization) as shown below (symbolized by HA):

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

Common examples of monoprotic acids in mineral acids include Hydrochloric Acid (HCl) and Nitric Acid $\left(\mathrm{HNO}_{3}\right)$

- Polyprotic acids are able to donate more than one proton per acid molecule.
> Diprotic acids have two potential protons to donate

$$
\mathrm{H}_{2} \mathrm{~A}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HA}^{-}(\mathrm{aq})
$$

> Triprotic acids have three potential protons to donate

$$
\mathrm{H}_{3} \mathrm{~A}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~A}^{-}(\mathrm{aq})
$$

Acids \& Bases

■ Oxoacids
> Oxoacids with one oxygen have the structure: HOY $\mathrm{HOCl} \quad \mathrm{HOBr} \quad \mathrm{HOI}$
> Oxoacids with multiple oxygen have the structure:
$(\mathrm{OH})_{m} \mathrm{YO}_{\mathrm{n}}$
$\mathrm{HOClO}_{3}\left(\mathrm{HClO}_{4}\right)$ $\mathrm{HOClO}\left(\mathrm{HCLO}_{2}\right)$ $\mathrm{HOClO}_{2}\left(\mathrm{HOCLO}_{3}\right)$ HOCL (HClO)

The more oxygen atoms, the greater the acidity; thus HOCLO_{3} is a stronger acid than HOCl
Acidity refers to the relative acid strength, i.e. the degree to which the acid dissociates to form $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right) \& \mathrm{OH}^{-}$

Bronsted-Lowry Acids \& Bases

- Brønsted-Lowry Concept of Acids and Bases
> In the Brønsted-Lowry concept:
- An Acid is a species that donates protons
- A Base is a species that accepts protons
- Acids and bases can be ions as well as molecular substances
- Acid-base reactions are not restricted to aqueous solution
- Some species can act as either acids or bases (Amphoteric species) depending on what the other reactant is

Bronsted-Lowry Acids \& Bases

- Amphoteric Species
- A species that can act as either an acid or base is: Amphoteric
Water is an important amphoteric species in the acidbase properties of aqueous solutions
- Water can react as an acid by donating a proton to a base
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ H^{+}
- Water can also react as a base by accepting a proton from an acid

$$
\underset{\mathrm{H}^{+}}{\mathrm{HF}(\mathrm{aq})}+\underset{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}{\mathrm{H}} \rightarrow \mathrm{~F}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

Bronsted-Lowry Acids \& Bases

- Brønsted-Lowry Concept of Acids and Bases

Proton transfer as the essential feature of a
Brønsted-Lowry acid-base reaction

Acids \& Bases

- Bronsted-Lowery Concept - Conjugate Pairs
> In Bronsted theory, acid and base reactants form:

Conjugate Pairs

> The acid (HA) donates a proton to water leaving the conjugate Base (A^{-})
> The base $\left(\mathrm{H}_{2} \mathrm{O}\right)$ accepts a proton to form the conjugate acid $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$
$\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
Acid
Base
Conjugate Base

Conjugate Acid

Bronsted-Lowry Acids \& Bases

Bronsted-Lowery Acid-Base Conjugate Pairs

$\mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q)$

$\underset{\substack{\text { Bronsted } \\ \text { Acid }}}{\text { acid }}$

- Conjugate acid-base pairs are shown connected
- Every acid has a conjugate base
- Every base has a conjugate acid
- The conjugate base has one fewer H and one more "minus" charge than the acid
- The conjugate acid has one more H and one fewer minus charge than the base

Bronsted-Lowry Acids \& Bases

■ Bronsted-Lowery Acid-Base Conjugate Pairs
$\left.\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{NH}_{4}+a q\right)+\mathrm{OH}^{-}(a q)$

Bronsted-Lowry Acids \& Bases

Bronsted-Lowery Acid-Base Conjugate Pairs

Bronsted	Bronsted	$\mathrm{NH}_{4}+$ is conjugate	HS- is conjugate
Acid	Base	acid of base NH_{3}	Base of acid $\mathrm{H}_{2} \mathrm{~S}$
Donates	Accepts		
Proton	Proton		

Bronsted-Lowry Acids \& Bases

- Bronsted_Lowry Concept - The Leveling Effect
> All Bronsted_Lowry acids yield $\mathrm{H}_{3} \mathrm{O}^{+}$ions (Cation)
> All Bronsted_Lowry bases yield OH^{-}ions (Anion)
> All strong acids are equally strong because all of them form the strongest acid possible - $\mathrm{H}_{3} \mathrm{O}^{+}$
> Similarly, all strong bases are equally strong because they form the strongest base possible - OH^{-}
> Strong acids and bases dissociate completely yielding $\mathrm{H}_{3} \mathrm{O}^{+}$ and OH^{-}
> Any acid stronger than $\mathrm{H}_{3} \mathrm{O}^{+}$simply donates a proton to $\mathrm{H}_{2} \mathrm{O}$
> Any base stronger than OH^{-}simply accepts proton from $\mathrm{H}_{2} \mathrm{O}$
> Water exerts a leveling effect on any strong acid or base by reacting with it to form water ionization products

Practice Problem

- Identify the conjugate acid-base pairs in the following:

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{-2}(\mathrm{aq}) \quad \square \quad \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2 \cdot}(\mathrm{aq})
$$

$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$has one more H^{+}than $\mathrm{HPO}_{4}{ }^{2-}$ and
$\mathrm{CO}_{3}{ }^{2-}$ has one fewer H^{+}than HCO_{3}^{-}
$\mathrm{H}_{2} \mathrm{PO}_{4}$ \& HCO_{3}^{-}are acids
$\mathrm{HPO}_{4}{ }^{2 \cdot} \& \mathrm{CO}_{3}{ }^{2 \cdot}$ are bases
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} / \mathrm{HPO}_{4}{ }^{2-}$ is a conjugate acid-base pair $\mathrm{HCO}_{3}^{-} / \mathrm{CO}_{3}^{2-}$ is a conjugate acid-base pair

Lewis Acids \& Bases

- Lewis Acids \& Bases

> Some acid base reactions don't fit the Bronsted-Lowry or Arrhenius classifications
> The Lewis acid-base concepts expands the acid class
> Such reactions involve a "sharing" of electron pairs between atoms or ions
> Lewis Acid - An electron deficient species (Electrophile) that accepts an electron pair
> Lewis Base - An electron rich species (Nucleophile) that donates an electron pair

Lewis Acids \& Bases

- Lewis Acids \& Bases

- The product of any Lewis acid-base reaction is called an "Adduct", a single species that contains a new covalent bond (shared electron pair)

Lewis Acids \& Bases

- Species that do not contain Hydrogen in their formulas, such as CO_{2} and Cu^{++}function as Lewis acids by accepting an electron pair
- The donated proton of a Bronsted-Lowry acid acts as a Lewis acid by accepting an electron pair donated by the base:
> The Lewis acids are Yellow and the Lewis bases are Blue in following reaction
$\mathrm{BF}_{3}+: \mathrm{NH}_{3} \leftrightarrow \mathrm{BF}_{3} \mathrm{NH}_{3}$
$\mathrm{Fe}^{3+}+6 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$
$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Base
Acid
Adduct

Lewis Acids \& Bases

- Solubility Effects
> A Lewis acid-base reaction between nonpolar Diethyl Ether and normally insoluble Aluminum Chloride

> The solubility of Aluminum Chloride in Dimethyl Ether results from the Oxygen acting as a base by donating an electron pair to the Aluminum acting as an acid forming a water-soluble polar covalent bond

PART II: Acids \& Bases

- Self Ionization of Water
- Pure water undergoes auto-ionization to produce Hydronium and Hydroxide ions

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \leftrightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- The extent of this process is described by an autoionization (ion-product) constant, K_{w}

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

- The concentrations of Hydronium and Hydroxide ions in any aqueous solution must obey the auto-ionization equilibrium
- Classification of solutions using K_{w} :

$$
\begin{array}{ll}
\text { Acidic: } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]} \\
\text {Basic: } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}<\left[\mathrm{OH}^{-}\right]\right.} \\
\text {Neutral: } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]}
\end{array}
$$

Acids \& Bases

- Because of the auto-ionization constant of water, the amounts of Hydronium and Hydroxide ions are always related
\Rightarrow For example, pure water at $25^{\circ} \mathrm{C}$,

$$
\begin{aligned}
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] & =1.0 \times 10^{-14} \\
{\left.\left[\mathrm{H}_{3} \mathrm{O}\right)^{+}\right]=\left[\mathrm{OH}^{-}\right] } & =1.0 \times 10^{-7}
\end{aligned}
$$

- The Definition of pH
$>$ The amount of Hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in solution is often described by the pH of the solution

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =1 \times 10^{-\mathrm{pH}}
\end{aligned}
$$

- The Definition of pOH
> Hydroxide $\left(\mathrm{OH}^{-}\right)$can be expressed as pOH $\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{OH}^{-}\right]=1 \times 10^{-\mathrm{pOH}}$

Acids \& Bases

pH scale ranges from 0 to 14
$>$ The pH of pure water $=-\log \left(1.00 \times 10^{-7}\right)=7.00$

$$
\begin{array}{lll}
\mathrm{pH}=0.00-6.999+ & =\text { acidic } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]} \\
\mathrm{pH}=7.00 & =\text { neutral } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]} \\
\mathrm{pH}=7.00^{+}-14.00 & =\text { basic } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]}
\end{array}
$$

> Acidic solutions have a lower pH (higher $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and a higher pOH (lower $\left[\mathrm{OH}^{-}\right]$than basic solutions

Acids \& Bases

- Relations among pH, pOH, and pK_{w}

$$
\begin{aligned}
\mathrm{K}_{\mathrm{w}} & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
-\log \left(\mathrm{K}_{\mathrm{w}}\right) & =-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]\right)=-\log \left(1 \times 10^{-14}\right) \\
-\log \left(\mathrm{K}_{\mathrm{w}}\right) & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]= \\
\mathrm{pK}_{\mathrm{w}} & =-\log \left(1 \times 10^{-14}\right) \\
\mathrm{pH}+\mathrm{pOH} & =14\left(\text { at } 25^{0} \mathrm{C}\right)
\end{aligned}
$$

Equilibrium \& Acid-Base Conjugates

- Equilibrium Constants (K) for acids \& bases can also be expressed as pK
> Reaction of an Acid (HA) with water as a base

$$
\begin{gathered}
\underset{\text { Bad }}{\mathrm{HA}(\mathrm{aq})}
\end{gathered}+\underset{\text { Base }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})} \quad \underset{\text { Conjugate Acid }}{\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})}+\underset{\text { Conjugate Base }}{\mathrm{A}^{-}}
$$

$$
\mathbf{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \mathrm{pK}_{\mathrm{a}}=-\log _{10}\left[\mathrm{~K}_{\mathrm{a}}\right]
$$

> Reaction of a Base (A^{-}) with water as an acid

$$
\begin{gathered}
\mathrm{A}^{-}(\mathrm{aq}) \\
\text { Base }
\end{gathered} \begin{gathered}
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\text { Acid }
\end{gathered} \begin{gathered}
\mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\text { Conjugate Acid } \quad \text { Conjugate Base } \\
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
\end{gathered}
$$

Equilibrium \& Acid-Base Conjugates

- Relationship between:
K_{a} and HA
K_{b} and A^{-}
- Setup two dissociation reactions:

$$
\begin{aligned}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\underset{+}{+} \\
\mathbf{A}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}^{-}+\mathrm{OH}^{-} \\
\hline 2 \mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

(autoionization)

- The sum of the two dissociation reactions is the autoionization of water
- The overall equilibrium constant is the product of the individual equilibrium constants

$$
\begin{aligned}
\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]} \times \frac{[\mathrm{HA}]\left[\mathrm{OH}^{+}\right]}{[\mathrm{A}]} & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{+}\right] \\
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}} & =
\end{aligned}
$$

Equilibrium \& Acid-Base Conjugates

$$
\begin{aligned}
\mathrm{K}_{\mathrm{w}} & =\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}} \\
-\log \left(\mathrm{K}_{\mathrm{w}}\right) & =-\log \left(\left[\mathrm{K}_{\mathrm{a}}\right]\left[\mathrm{K}_{\mathrm{b}}\right]\right) \\
-\log \left(\mathrm{K}_{\mathrm{w}}\right) & =-\log \left[\mathrm{K}_{\mathrm{a}}\right]-\log \left[\mathrm{K}_{\mathrm{b}}\right] \\
\mathrm{pK}_{\mathrm{w}} & =\mathrm{pK} \mathrm{~K}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=14 \quad\left(\text { at } 25^{\circ} \mathrm{C}\right) \\
\mathrm{pK}_{\mathrm{w}} & =\mathrm{pH}+\mathrm{pOH}=14 \quad\left(\text { at } 25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

- From this relationship, K_{a} of the acid in a conjugate pair can be computed from K_{b} and vice versa
- Reference tables typically have K_{a} \& K_{b} values for molecular species, but not for ions such as F- or $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$

Equilibrium \& Acid-Base Conjugates

> Acid strength $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases with increasing value of K_{a}

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

> Base strength $\left[\mathrm{OH}^{-}\right]$increases with increasing value of k_{b}

$$
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
$$

> A low pK corresponds to a high value of K

$$
\begin{aligned}
& \mathrm{pK} \\
& \mathrm{a}=-\log _{10}\left[\mathrm{~K}_{\mathrm{a}}\right] \\
& \mathrm{pK}_{\mathrm{b}}=-\log _{10}\left[\mathrm{~K}_{\mathrm{b}}\right]
\end{aligned}
$$

> A reaction that reaches equilibrium with mostly products present (proceeds to far right) has a "low pK" (high K)

Acids \& Bases

The pH Scale

PART III: Acids \& Bases

- Strong Acids \& Bases
> Strong acids and bases dissociate completely in aqueous solutions
Strong acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}$ Strong bases: all Group I \& II Hydroxides

$$
\mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Mg}(\mathrm{OH})_{2}
$$

> The term strong has nothing to do with the concentration of the acid or base, but rather the extent of dissociation
> In the case of HCl , the dissociation lies very far to the right because the conjugate base (Cl^{-}) is extremely weak, much weaker than water

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

$>\mathrm{H}_{2} \mathrm{O}$ is a much stronger base than Cl^{-}and "out competes it" for available protons

Acids \& Bases

Relative Strengths of Acids and Bases

	Acid	Base	
Strongest acids	HClO_{4}	$\mathrm{ClO}_{4}{ }^{-}$	Weakest
	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{HSO}_{4}{ }^{-}$	bases
	HI	I^{-}	\uparrow
	HBr	Br^{-}	
	HCl	Cl^{-}	
	HNO_{3}	$\mathrm{NO}_{3}{ }^{-}$	
	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	
	$\mathrm{HSO}_{4}{ }^{-}$	$\mathrm{SO}_{4}{ }^{2-}$	
	$\mathrm{H}_{2} \mathrm{SO}_{3}$	$\mathrm{HSO}_{3}{ }^{-}$	
	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	
	HNO_{2}	$\mathrm{NO}_{2}{ }^{-}$	
	HF	F^{-}	
	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	
	$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$	$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}$	
	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{HCO}_{3}{ }^{-}$	
	$\mathrm{H}_{2} \mathrm{~S}$	HS^{-}	
	HClO	ClO^{-}	
	HBrO	BrO^{-}	
	$\mathrm{NH}_{4}{ }^{+}$	NH_{3}	
	HCN	CN^{-}	
	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$	
	$\mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{HO}_{2}{ }^{-}$	
	HS^{-}	S^{2-}	
Weakest acids	$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	Strongest bases

Activity Series

Strengths of acids and bases

Strength determined by K, not concentration

PART IV: Weak Acid Equilibria Problems

- Solving Problems involving Weak-Acid Equilibria
> Types
- Given equilibrium concentrations, find K_{a}
- Given K_{a} and some concentrations, find other concentrations
- Approach
- Determine "Knowns" and "Unknowns"
- Write the Balanced Equation
- Set up equilibrium expression - $K_{a}=\frac{[C]^{c}[D]^{d} \ldots . .}{[A]^{a}[B]^{b} \ldots}$
- Define " x " as the unknown change in [HA]
- Typically, $x=[A]_{\text {diss }}$ (conc. of HA that dissociates)

$$
x=[A]_{\text {diss }}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{A}^{-}\right]
$$

Weak Acid Equilibria Problems

- Construct a "Reaction" table
- Make assumptions that simplify calculations
- Usually, "x" is very small relative to initial concentration of HA
- Assume $[\mathrm{HA}]_{\text {init }} \approx[\mathrm{HA}]_{\mathrm{eq}}$ \& Apply 5% rule

$$
\text { If " } x \text { " }<5 \%[H A]_{\text {init }} ; \text { assumption is valid }
$$

- Substitute values into K_{a} expression, solve for " x "
> The Notation System
- Brackets - [HA]; [HA] dissi $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

> indicate "Molar" concentrations

- Bracket with "no" subscript refers to molar concentration of species at equilibrium

Weak Acid Equilibria Assumptions

- Assumptions
$\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}$
$>$ The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from the "autoionization" of water is "Negligible"

It is much smaller that the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from the dissociation of HA
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {from } \mathrm{HA}}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {from } \mathrm{H}_{2} \mathrm{O}} \approx\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {from } \mathrm{HA}}$
> A weak acid has a small K_{a}
> Therefore, the change in acid concentration can be neglected in the calculation of the equilibrium concentration of the acid

$$
[\mathrm{HA}]=[\mathrm{HA}]_{\text {nit }}-[\mathrm{HA}]_{\text {dissoc }} \approx[\mathrm{HA}]_{\text {init }}
$$

Weak Acid Equilibria Assumptions

- Assumption Criteria - 2 approaches

$$
\begin{gathered}
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-} \\
\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

$>$ For K_{c} relative to $[\mathrm{HA}]_{\text {jinit }}\left(\right.$ or K_{p} relative to $\left.\mathrm{P}_{\mathrm{A}(\text { (nit) }}\right)$
if $\frac{[\mathrm{HA}]_{\text {nit }}}{\mathrm{Kc}}>400$, the assumption $[\mathrm{HA}] \approx[\mathrm{Ha}]_{\text {init }}$ is justified Neglecting x introduces an error < 5\%
if $\frac{[\mathrm{HA}]_{\text {init }}}{\mathrm{Kc}}<400$, the assumption $[\mathrm{HA}] \approx[\mathrm{HA}]_{\text {nint }}$ is not justified Neglecting x introduces an error > 5\%
> For $[\mathrm{HA}]_{\text {diss }}$ relative to $[\mathrm{HA}]_{\text {jint }}$
if $[\mathrm{HA}]_{\text {diss }}<5 \%[\mathrm{HA}]_{\text {init }}$, the assumption $\left([\mathrm{HA}] \approx[\mathrm{HA}]_{\text {init }}\right)$ is valid

Weak Acid Equilibria

- Effect of Concentration on Extent of Acid Dissociation

$$
\begin{aligned}
& \text { Case 1: }[\mathrm{HPr}]_{\text {int }}=0.10 \mathrm{M} \\
& \mathrm{~K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{Pr}]}{[\mathrm{HPr}]}=1.3 \times 10^{-5} \approx \frac{(\mathrm{x})(\mathrm{x})}{0.10} \\
& \mathrm{x}=1.1 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{Pr}^{-}\right]=[\mathrm{HPr}]_{\text {diss }} \\
& \% \mathrm{HA}_{\text {diss }}=\frac{\left[\mathrm{HPr}_{d_{\text {diss }}}\right.}{[\mathrm{HPr}]_{\text {init }}}=\frac{1.1 \times 10^{-3} \mathrm{M}}{1.0 \times 10^{-1} \mathrm{M}} \times 100=1.1 \% \\
& \text { Case 2: }[\mathrm{HPr}]_{\text {nitt }}=0.01 \mathrm{M} \\
& \mathbf{x}=3.6 \times 10^{-4} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{Pr}^{-}\right]=\left[\mathrm{HPr}_{\text {diss }}\right. \\
& \% \mathrm{HA}_{\text {diss }}=\frac{3.6 \times 10^{-4} \mathrm{M}}{1.0 \times 10^{-2} \mathrm{M}} \times 100=3.6 \%
\end{aligned}
$$

As the concentration decreases the percent dissociation increases

Weak Acid Equilibria

- Polyprotic Acids
- Acids with more than one ionizable proton are polyprotic acids.
$>$ One proton at a time dissociates from the acid molecule
> Each dissociation step has a different K_{a}

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=7.2 \times 10^{-3} \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{HPO}_{4}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{HPO}_{4}{ }^{-2}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]}=6.3 \times 10^{-8} \\
& \mathrm{HPO}_{4}^{-2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{PO}_{4}^{-3}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{a} 3}=\frac{\left[\mathrm{PO}_{4}^{-3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HPO}_{4}^{-}\right]}=4.2 \times 10^{-13}
\end{aligned}
$$

Weak Acid Equilibria

Successive K_{a} Values for Some Polyprotic Acids at $25^{\circ} \mathrm{C}$					
Name (Formula)	Lewis Structure*	$K_{\text {a } 1}$	$K_{\text {a } 2}$	$K_{\text {a3 }}$	
Oxalic acid ($\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$)		5.6×10^{-2}	5.4×10^{-5}		
Sulfurous acid ($\left.\mathrm{H}_{2} \mathrm{SO}_{3}\right)$		1.4×10^{-2}	6.5×10^{-8}		
Phosphoric acid ($\mathrm{H}_{3} \mathrm{PO}_{4}$)		7.2×10^{-3}	6.3×10^{-8}	4.2×10^{-13}	든
Arsenic acid ($\left.\mathrm{H}_{3} \mathrm{AsO}_{4}\right)$		6×10^{-3}	1.1×10^{-7}	3×10^{-12}	$\left\|\begin{array}{c} \frac{4}{5} \\ 0 \\ 0 \\ \hline 0 \end{array}\right\|$
Carbonic acid ($\mathrm{H}_{2} \mathrm{CO}_{3}$)		4.5×10^{-7}	4.7×10^{-11}		
Hydrosulfuric acid ($\left.\mathrm{H}_{2} \mathrm{~S}\right)$	H-Ṣ.-H	9×10^{-8}	1×10^{-17}		

Successive dissociation equilibrium constants (Ka) for polyprotic acids have significantly lower values
Ka1 >> Ka2 >> Ka3

Weak Bases \& Relation to Weak Acids

- Base - Any species that accepts a proton (Bronsted)
- In water the base accepts a proton from water acting as an acid (water is amphoteric) and leaves behind a OH^{-}ion

$$
\begin{gathered}
\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]\left[\mathrm{H}_{2} \mathrm{O}\right]}
\end{gathered}
$$

- The water term is treated as a constant in aqueous reactions and is incorporated into the value of K_{c}

$$
\begin{gathered}
\mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]} \\
\mathrm{pK}_{\mathrm{b}}=-\operatorname{logK}_{\mathrm{b}}
\end{gathered}
$$

- Base strength increases with increasing $\mathrm{K}_{\mathrm{b}}\left(\mathrm{pK}_{\mathrm{b}}\right.$ deceases)

Weak Base Equilibria

- Ammonia is the simplest Nitrogen-containing compound that acts as a weak base in water

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- Ammonium Hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$ in aqueous solution consists largely of unprotonated NH_{3} molecules, as its small K_{b} indicates:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]} \\
& \mathrm{K}_{\mathrm{b}}=1.76 \times 10^{-5}
\end{aligned}
$$

Weak Base Equilibria

In a $1.0 \mathrm{M} \mathrm{NH}_{3}$ solution:

$$
\left[\mathrm{OH}^{-}\right]=\left[\mathrm{NH}_{4}^{+}\right]=4.2 \times 10^{-3} \mathrm{M}
$$

The NH_{3} is about 99.58% undissociated

- If one or more of the Hydrogen atoms in ammonia is replaced by an "organic" group (designated as R), an "Amine" results:

- The Nitrogen atom in each compound has a "lone-pair" of unbonded electrons, a Bronsted Base characteristic, i.e., the electron pair(s) can accept protons

Weak Base Equilibria

$K_{\text {b }}$ Values for Some Molecular (Amine) Bases at $25^{\circ} \mathrm{C}$			
Name (Formula)	Lewis Structure*	$K_{\text {b }}$	
Diethylamine $\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}\right]$		8.6×10^{-4}	
Dimethylamine $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right]$		5.9×10^{-4}	
Methylamine ($\mathrm{CH}_{3} \mathrm{NH}_{2}$)		4.4×10^{-4}	
Ammonia (NH_{3})		1.76×10^{-5}	$\begin{aligned} & \text { 山̈ } \\ & \underset{\infty}{\omega} \end{aligned}$
Pyridine ($\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$	〇n:	1.7×10^{-9}	
Aniline ($\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$		4.0×10^{-10}	

Anions of Weak Acids \& Bases

- The anions of weak acids are Bronsted-Lowry bases

$$
\mathbf{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Base (\mathbf{A}^{-}) accepts a proton from water to form conjuate acid (HA)

$$
\mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HF}^{\mathrm{F}}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]}
$$

F^{-}, anion of weak acid HF, acts as weak base and accepts a proton to form HF

Anions of Weak Acids \& Bases

- The acidity of HF vs F-
> HF is a weak acid, very little dissociates
> Very little $\mathrm{H}_{3} \mathrm{O}^{+}$and F^{-}produced

$$
\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \overleftarrow{\square} \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})
$$

> Water autoionization also contributes $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}, but in much smaller amounts than $\mathrm{H}_{3} \mathrm{O}^{+}$from HF

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

> The Acidity of a solution is influenced mainly by the

$$
\mathrm{H}_{3} \mathrm{O}^{+} \text {from } \mathrm{HF} \text { and } \mathrm{OH}^{-} \text {from water }
$$

$$
\left.\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {riom HF }} \ggg \mathrm{OH}^{-}\right]_{\text {riom H,O }} \quad \text { (solution acidic) }
$$

Anions of Weak Acids \& Bases

- Basicity of A-(aq)
> Consider 1 M solution of NaF
> Salt dissociates completely to yield stoichiometric concentrations of F^{-}, assume Na^{+}is spectator ion
> Some of the F^{-}reacts with water to form OH^{-}

$$
\begin{gathered}
\mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HF}^{\mathrm{F}}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]}
\end{gathered}
$$

> Water autoionization also contributes $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}, but in much smaller amounts than OH^{-}from reaction of F^{-}and $\mathrm{H}_{2} \mathrm{O}$

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$\left.\left[\mathrm{OH}^{-}\right]_{\text {fiom } \mathrm{F}^{-}} \gg \mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {firom H,O }} \quad$ (solution basic)

Anions of Weak Acids \& Bases

- Summary
> The relative concentration of HA \& A^{-}determine the acidity or basicity of the solution
- In an HA solution, [HA] >> [A`] and
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {from } \mathrm{HA}} \gg\left[\mathrm{OH}^{-}\right]_{\text {from } \mathrm{H}_{3} \mathrm{O}^{+}}$
"Solution is Acidic"
- In an A^{-}solution, $\left[\mathrm{A}^{-}\right] \gg[\mathrm{HA}]$ and
$\left[\mathrm{OH}^{-}\right]_{\text {from A }} \gg\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {from } \mathrm{H}_{3} \mathrm{O}^{+}}$
"Solution is Basic"

Acid Strength

- Trends in Acid Strength of Nonmetal Hydrides
- As the electronegativity of the nonmetal (E) bonded to the ionizable proton increases (left to right), the acidity increases
- As the length of the E-H bond increases (top to bottom), the bond strength decreases, so the acidity increases
- The "strong" monoprotic halide acids $(\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI})$ are equally strong
Note: (HF) is a weak acid)

Acid Strength in Oxoacids

- Oxoacids
> An Oxoacid is an acid that contains Oxygen
> To be more specific, it is an acid that:
- contains oxygen
- contains at least one other element (S, N, X)
- has at least one Hydrogen atom (acid hydrogen) bound to oxygen
- forms an ion by the loss of one or more protons
- acidity of an Oxoacid is not related to bond strength as in nonmetal hydrides

Acid Strength in Oxoacids

- Oxoacids with 1 Oxygen - HOE structure:

The more electronegative is E , the stronger the acid

Acid Strength: $\mathrm{HOCl}>\mathrm{HOBr}>\mathrm{HOI}$

- Oxoacids with multiple Oxygens - $(\mathrm{OH})_{m} \mathrm{EO}_{\mathrm{n}}$ structure

The more Oxygen atoms, the greater the acidity

$$
\begin{aligned}
& \mathrm{HOClO}_{3}\left(\mathrm{HClO}_{4}\right)>\mathrm{HOClO}_{2}\left(\mathrm{HCLO}_{3}\right)> \\
& \mathrm{HOClO}\left(\mathrm{HCLO}_{2}\right)>\mathrm{HOCL} \quad(\mathrm{HClO})
\end{aligned}
$$

Acid Strength in Oxoacids

- For oxoacids with the same number of oxygen atoms around E, acid strength increases with the electronegativity of E
$\mathrm{K}_{\mathrm{a}}(\mathrm{HOCl})=2.9 \times 10^{-8}>\mathrm{K}_{\mathrm{a}}(\mathrm{HOBr})=2.3 \times 10^{-9}>\mathrm{K}_{\mathrm{a}}(\mathrm{HOI})=2.3 \times 10^{-11}$
- For oxoacids with different numbers of oxygen atoms around a given E , acid strength increases with the number of oxygen atoms.
- K_{a} (HOCl

Hypochorous acid) $=2.9 \times 10^{-8}$ (Weak)

- K_{a} (HOCLO

Chlorous acid) $=1.12 \times 10^{-2}$

- K_{a} (HOCLO_{2} Chloric acid)
≈ 1
- $\mathrm{K}_{\mathrm{a}}\left(\mathrm{HOCLO}_{3}\right.$ Perchloric acid) $=>10^{7}$
(Strong)

Acid-Base Properties - Salt Solutions

- Neutral Salt Solutions
> Salts consisting of the Anion of a Strong Acid and the Cation of a Strong Base yield a neutral solutions because the ions do not react with water

$$
\mathrm{HNO}_{3}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

Nitrate $\left(\mathrm{NO}_{3}^{-}\right)$is a weaker base than water $\left(\mathrm{H}_{2} \mathrm{O}\right)$; reaction goes to completion as the $\mathrm{NO}_{3}{ }^{-}$becomes fully hydrated; does not react with water

$$
\mathrm{NaOH}(\mathrm{~s}) \xrightarrow{\mathrm{H}, \mathrm{O}()} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Sodium becomes full hydrated; does not react with water
$\mathrm{NaNO}_{3}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ $\mathrm{Na}^{+} \& \mathrm{NO}_{3}{ }^{-}$do not react with water, leaving just the "autoionization of water, i.e., a neutral solution

Acid-Base Properties - Salt Soln

- Salts that produce Acidic Solutions
> A salt consisting of the anion of a strong acid and the cation of a weak base yields an acidic solution
- The cation acts as a weak acid
- The anion does not react with water (previous slide)
- In a solution of $\mathrm{NH}_{4} \mathrm{Cl}$, the $\mathrm{NH}_{4}+$ ion that forms from the weak base, NH_{3}, is a weak acid
- The Chloride ion, the anion from a strong acid does not react with water

$$
\begin{gathered}
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-} \\
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+} \quad(\text { Acidic })
\end{gathered}
$$

Acid-Base Properties - Salt Soln

- Salts that produce Basic Solutions
> A salt consisting of the anion of a weak acid and the cation of a strong base yields a basic solution
> The anion acts as a weak base
> The cation does not react with water
> The anion of the weak acid accepts a proton from water to yield OH^{-}ion, producing a "Basic" solution

$$
\mathrm{CH}_{3} \mathrm{COONa}(\mathrm{~s})+\underset{\text { (dissoluton \& hydration) }}{\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}$(Basic) (reaction of weak base - Acetate Anion))

Salts of Weakly Acidic Cations and Weakly Basic Anions

- Overall acidity of solution depends on relative acid strength $\left(\mathrm{K}_{\mathrm{a}}\right)$ or base strength $\left(\mathrm{K}_{\mathrm{b}}\right)$ of the separated ions
Ex. $\mathrm{NH}_{4} \mathrm{CN}$ - Acidic or Basic?
Write equations for any reactions that occur between the separated ions and water

$$
\begin{gathered}
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{CN}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \\
\mathrm{HCN}(\mathrm{aq})+\mathrm{OH}^{-}
\end{gathered}
$$

Salts of Weakly Acidic Cations and Weakly Basic Anions

■ Ex. $\mathrm{NH}_{4} \mathrm{CN}$ - Acidic or Basic? (Con't)
Compare K_{a} of NH_{4}^{+}\& K_{b} of CN^{-}
Recall: Molecular compounds only in tables of $\mathrm{K}_{\mathrm{a}} \& \mathrm{~K}_{\mathrm{b}}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}} \text { of } \mathrm{NH}_{4}^{+}=\frac{\mathrm{K}_{\mathrm{v}}}{\mathrm{~K}_{\mathrm{b}} \text { of } \mathrm{NH}_{3}}=\frac{1.0 \times 10^{14}}{1.76 \times 10^{-8}}=5.7 \times 10^{-10} \\
& \mathrm{~K}_{\mathrm{b}} \text { of } \mathrm{CN}=\frac{\mathrm{K}_{\mathrm{v}}}{\mathrm{~K}_{\mathrm{a}} \text { of } \mathrm{HCN}}=\frac{1.0 \times 10^{-14}}{6.2 \times 10^{-5}}=1.6 \times 10^{-5}
\end{aligned}
$$

Magnitude of $\mathrm{K}_{\mathrm{b}}\left(\mathrm{K}_{\mathrm{b}}>\mathrm{K}_{\mathrm{a}}\right)\left(1.6 \times 10^{-5} / 5.7 \times 10^{-10}=3 \times 10^{4}\right)$

$$
\mathrm{K}_{\mathrm{b}} \text { of } \mathrm{CN}^{-} \gg \mathrm{K}_{\mathrm{a}} \text { of } \mathrm{NH}_{4}{ }^{+} \quad \text { Solution is Basic }
$$

Acceptance of proton from $\mathrm{H}_{2} \mathrm{O}$ by CN^{-}proceeds much further than the donation of a proton to $\mathrm{H}_{2} \mathrm{O}$ by $\mathrm{NH}_{4}{ }^{+}$

