Ionic Equilibria in Aqueous Solutions

- Equilibria of Acid-Base Buffer Systems
> The Common Ion Effect
> The Henderson-Hasselbalch Equation
> Buffer Capacity and Range
> Preparing a buffer
- Acid-Base Titration Curves
> Acid-Base Indicators
> Strong-Acid-Strong Base Titrations
> Weak Acid-Strong Base Titrations
> Weak Base-Strong Acid Titrations
> Polyprotic Acid Titrations
> Amino Acids as Polyprotic Acids

Ionic Equilibria in Aqueous Solutions

- Equilibria of Slightly Soluble Ionic Compounds
> The Solubility-Product Constant
> Calculations involving $\mathrm{K}_{\text {sp }}$
> The Effect of a Common Ion
> The Effect of pH
$>\mathrm{Q}_{\text {sp }}$ vs. $\mathrm{K}_{\text {sp }}$
- Equilibria involving Complex Ions
> Formation of Complex Ions
> Complex Ions and Solubility
> Amphoteric Hydroxides

Ionic Equilibria in Aqueous Solutions

- The simplest acid-base equilibria are those in which a single acid or base solute reacts with water
- In this chapter, we will look at:
> solutions of weak acids and bases through acid/base ionization
> The reactions of salts with water
> Titration curves
- All of these processes involve equilibrium theory

Ionic Equilibria in Aqueous Solutions

- Equilibria of Acid-Base Buffer Systems
> Buffer
- An Acid-Base Buffer is a species added to an solution to minimize the impact on pH from the addition of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$ions
- Small amounts of acid or base added to an unbuffered solution can change the pH by several units
- Since pH is a logarithmic term, the change in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$can be several orders of magnitude

Ionic Equilibria in Aqueous Solutions

- The Common Ion Effect
> Buffers work through a phenomenon known as the:

Common Ion Effect

> The common ion effect occurs when a given ion is added to an "equilibrium mixture of a weak acid or weak base that already contains that ion
> The additional "common ion" shifts the equilibrium away from its formation to more of the undissociated form; i.e., the acid or base dissociation decreases
> A buffer must contain an "acidic" component that can react with the added OH^{-}ion, and a "basic" component than can react with the added $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Ionic Equilibria in Aqueous Solutions

> The buffer components cannot be just any acid or base
> The components of a buffer are usually the conjugate acid-base pair of the weak acid (or base) being buffered
Ex: Acetic Acid \& Sodium Acetate
Acetic acid is a weak acid, slightly dissociated
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}-(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
Acid Base $\begin{gathered}\text { Conjugate } \\ \text { Base }\end{gathered} \begin{gathered}\text { Conjugate } \\ \text { Acid }\end{gathered}$

Ionic Equilibria in Aqueous Solutions

> Ex: Acetic Acid \& Sodium Acetate (Con't)

- Now add Sodium Acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$, a strong electrolyte (Acetate ion is the conjugate base)
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ (added)
- The added Acetate ions shift the equilibrium to the left forming more undissociated acetic acid
- This lowers the extent of acid dissociation, which lowers the acidity by reducing the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] and increasing the pH
- Similarly, if Acetic Acid is added to a solution of Sodium Acetate, the Acetate ions already present act to suppress the dissociation of the acid

Ionic Equilibria in Aqueous Solutions

When a small amount of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is add to acetic acid/acetate buffer, that same amount of acetate ion $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$combines with it, increasing the concentration of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$. The change in the [HA]/[A-] ratio is small; the added $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is effectively tied up; thus, the change $4 / 28 / 209 \mathrm{pH}$ is also small

Ionic Equilibria in Aqueous Solutions

- Essential Features of a Buffer
> A buffer consists of high concentrations of the undissociated acidic component [HA] and the conjugate base [A] component
> When small amounts of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] or [OH^{-}] are added to the buffer, they cause small amounts of one buffer component to convert to the other component

Ionic Equilibria in Aqueous Solutions

Ex. When a small amount of $\mathrm{H}_{3} \mathrm{O}^{+}$is added to an Acetate buffer, that same amount of $\mathrm{CH}_{3} \mathrm{COO}^{-}$combines with it, increasing the amount of undissociated $\mathrm{CH}_{3} \mathrm{COOH}$ tying up potential $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Similarly, a small amount of OH^{-}added combines with undissociated $\mathrm{CH}_{3} \mathrm{COOH}$ to form $\mathrm{CH}_{3} \mathrm{COO}^{-} \& \mathrm{H}_{2} \mathrm{O}$ tying up potential [OH^{-}]
In both cases, the relative changes in the amount of buffer components is small, but the added $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$ions are tied up as undissociated components; thus little impact on pH

Ionic Equilibria in Aqueous Solutions

- The equilibrium perspective

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \\
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{\mathrm{HA}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}^{2}\right]} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=\mathrm{K}_{\mathrm{a}} \times \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}}
\end{gathered}
$$

> The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](\mathrm{pH})$ of the solution depends directly on the buffer-component concentration ratio
> If the ratio $[H A] /[A \cdot]$ goes up, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$goes up (pH down)
> If the ratio $[H A] /[A-]$ goes down, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$goes down (COH^{-}] goes up) and pH increases (less acidic)
> When a small amount of a strong acid is added, the increased amount of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$reacts with a stoichiometric amount of acetate ion from the buffer to form more undissociated acetic acid

Ionic Equilibria in Aqueous Solutions

- The Henderson-Hasselbalch Equation
> For any weak acid, HA, the dissociation equation and K_{a} expression are:

$$
\begin{gathered}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

The key variable that determines the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is the ratio of acid species (HA) to base species (A^{-})

$$
\left.\left.\begin{array}{rl}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} & =\mathrm{k}_{\mathrm{a}} \times \frac{[\mathrm{HA}](\text { acid species) }}{\left[\mathrm{A}^{-}\right] \text {(base species) }} \\
-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & =-\log \mathrm{K}_{\mathrm{a}}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \\
\mathrm{pH} & =\mathrm{pK} \\
\mathrm{a}
\end{array}\right] \log \frac{\left[\mathrm{~A}^{-}\right]}{[\mathrm{HA}]} \quad \begin{array}{l}
\text { Note the change in sign of } \\
\text { "log" term and inversion of } \\
\text { acid-base terms }
\end{array}\right]\left[\begin{array}{ll}
{[\text { base }]} \\
\mathrm{pH} & \left.=\mathrm{pK}_{\mathrm{a}}+\log \right]
\end{array}\right.
$$

Ionic Equilibria in Aqueous Solutions

- Buffer Capacity
- A buffer resists a pH change as long as the concentration of buffer components are large compared with the amount of strong acid or base added
> Buffer Capacity is a measure of the ability to resist pH change
> Buffer capacity depends on both the absolute and relative component concentrations
- Absolute - The more concentrated the components of a buffer, the greater the buffer capacity
- Relative - For a given addition of acid or base, the buffer-component concentration ratio changes less when the concentrations are similar than when they are different

Ionic Equilibria in Aqueous Solutions

- Ex. Consider 2 solutions
> Solution 1 - Equal volumes of 1.0 M HAc and $1.0 \mathrm{M} \mathrm{Ac}^{-}$
> Solution 2 - Equal volumes of 0.1 M HAc and $0.1 \mathrm{M} \mathrm{Ac}^{-}$
> Same pH (4.74) but 1.0 M buffer has much larger buffer capacity

Ionic Equilibria in Aqueous Solutions

Ex. Buffer \#1 $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]=1.000 \mathrm{M}$
Add $0.010 \mathrm{~mol}^{\text {of }} \mathrm{OH}^{-}$to 1.00 L of buffer
[HA] changes to $0.990 \mathrm{M} \quad\left[\mathrm{A}^{-}\right]$changes to 1.010 M

$$
\frac{\left[\mathrm{A}^{-}\right]_{\text {init }}}{[\mathrm{HA}]_{\text {init }}}=\frac{1.000 \mathrm{M}}{1.000 \mathrm{M}}=1.000 \quad \frac{\left[\mathrm{~A}^{-}\right]_{\text {ninal }}}{[\mathrm{HA}]_{\text {inal }}}=\frac{1.010 \mathrm{M}}{0.990 \mathrm{M}}=1.020
$$

$$
\text { Percent change }=\frac{1.020-1.000}{1.000} \times 100=2 \%
$$

Ionic Equilibria in Aqueous Solutions

Buffer \#2 [HA] $=0.250 \mathrm{M} \quad\left[\mathrm{A}^{-}\right]=1.75 \mathrm{M}$
Add 0.010 mol of OH^{-}to 1.00 L of buffer
[HA] changes to $0.240 \mathrm{M} \quad\left[\mathrm{A}^{-}\right]$changes to 1.760 M

$$
\frac{\left[\mathrm{A}^{-}\right]_{\text {int }}}{[\mathrm{HA}]_{\text {mit }}}=\frac{1.750 \mathrm{M}}{0.250 \mathrm{M}}=7.000 \quad \frac{\left[\mathrm{~A}^{-}\right]_{\text {inal }}}{[\mathrm{HA}]_{\text {final }}}=\frac{1.760 \mathrm{M}}{0.240 \mathrm{M}}=7.330
$$

$$
\text { Percent change }=\frac{7.330-7.000}{7.000} \times 100=4.7 \%
$$

Buffer-component concentration ratio is much larger when the initial concentrations of the components are very different

Ionic Equilibria in Aqueous Solutions

- A buffer has the highest capacity when the component acid / base concentrations are equal:

$$
\frac{[\mathrm{Base}]}{[\mathrm{Acid}]}=\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=1
$$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)=\mathrm{pK}_{\mathrm{a}}+\log 1=\mathrm{pK}_{\mathrm{a}}+0=\mathrm{pK}_{\mathrm{a}}
$$

A buffer whose pH is equal to or near the pK_{a} of its acid component has the highest buffer capacity

Ionic Equilibria in Aqueous Solutions

- Buffer Range
> pH range over which the buffer acts effectively is related to the relative component concentrations
> The further the component concentration ratio is from 1, the less effective the buffering action
$>$ If the $\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$ ratio is greater than 10 or less than 0.1 (or one component concentration is more than 10 times the other) the buffering action is poor

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{10}{1}\right)=\mathrm{pK}_{\mathrm{a}}+1 \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{1}{10}\right)=\mathrm{pK}_{\mathrm{a}}-1
$$

> Buffers have a usable range within:
$\pm 1 \mathrm{pH}$ unit or pK_{a} value of the acid components

Ionic Equilibria in Aqueous Solutions

- Equilibria of Acid-Base Systems
> Preparing a Buffer
- Choose the Conjugate Acid-Base pair
- Driven by pH
- Ratio of component concentrations close to 1 and $\mathrm{pH} \approx \mathrm{pK}_{\mathrm{a}}$

Ionic Equilibria in Aqueous Solutions

Ex. Assume you need a biochemical buffer whose pH is 3.9

1. pKa of acid component should be close to 3.9

$$
\mathrm{K}_{\mathrm{a}}=10^{-3.9}=1.3 \times 10^{-4}
$$

2. From a table of pK_{a} values select buffer possibilities

Lactic acid $\quad\left(\mathrm{pK}_{\mathrm{a}}=3.86\right)$
Glycolic acid $\quad\left(\mathrm{pK}_{\mathrm{a}}=3.83\right)$
Formic Acid $\quad\left(\mathrm{pK}_{\mathrm{a}}=3.74\right)$
3. To avoid common biological species, select Formic Acid

Buffer components of Formic Acid

> Formic Acid $-\mathrm{HCOOH}^{-} \quad$ (Acid)
> Formate Ion $-\mathrm{HCOO}^{-} \quad$ (Conjuagte Base)
> Obtain soluble Formate salt - HCOONa

Ionic Equilibria in Aqueous Solutions

4. Calculate Ratio of Buffer Component Concentrations ([A-]/[HA]) that gives desired pH

$$
\begin{gathered}
\mathrm{pH}=\mathrm{Pka}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right) \\
3.9=3.74+\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right) \\
\log \left(\left[\frac{\left[\mathrm{HCOO}^{-}\right]}{\left[\mathrm{HCOOH}^{-}\right]}\right)=3.9-3.74=0.16\right. \\
\text { Thus: }\left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right)=10^{0.16}=1.4
\end{gathered}
$$

Ionic Equilibria in Aqueous Solutions

> Preparing a Buffer (Con't)

- Determine the Buffer Concentrations
- The higher the concentration of the components, the higher the buffer capacity
- Assume 1 Liter of buffer is required and you have a stock of 0.40 M Formic Acid (HCOOH)
- Compute moles and then grams of Sodium Formate (CHOONa) needed to produce 1.4/1.0 ratio

Moles of $\mathrm{HCOOH}=1.0 \mathrm{~L} \times \frac{0.40 \mathrm{~mol} \mathrm{HCOOH}}{1.0 \mathrm{~L} \mathrm{soln}}=0.40 \mathrm{~mol} \mathrm{HCOOH}$
Moles of HCOONa $=0.40 \mathrm{~mol} \mathrm{HCOOH} \times \frac{1.40 \mathrm{~mol} \mathrm{HCOONa}}{1.0 \mathrm{~mol} \mathrm{HCOOH}}=0.56 \mathrm{~mol} \mathrm{HCOONa}$
Mass of HCOONa $=0.56 \mathrm{~mol} \mathrm{HCOONa} \times \frac{68.01 \mathrm{~g} \mathrm{HCOONa}}{1 \mathrm{~mol} \mathrm{HCOONa}}=38 \mathrm{~g} \mathrm{HCOONa}$ Con't

Ionic Equilibria in Aqueous Solutions

> Preparing a Buffer (Con't)

- Mix the solution and adjust the pH

The prepared solution may not be an ideal solution (see Chapter 13, Section 6)

The desired pH (3.9) may not exactly match the actual value of the buffer solution

- The pH of the buffer solution can be adjusted by a few tenths of a pH unit by adding strong acid or strong base.

Ionic Equilibria in Aqueous Solutions

- Acid-Base Titration Curves
> Acid-Base Indicators
- Weak organic acid (HIn) that has a different color than its conjugate base (In')
- The color change occurs over a relatively narrow pH range
- Only small amounts of the indicator are needed; too little to affect the pH of the solution
- The color range of typical indicators reflects a 100 - fold range in the [HIn]/In-] ratio
- This corresponds to a pH range of 2 pH units

Mixing Acids \& Bases

- Acids and bases react through neutralization reactions
- The change in pH of an acid mixed with a base is tracked with an Acid-Base Titration Curve
- Titration:
> Titration Curve: Plot of pH vs. the volume of the "Strong" acid or "Strong" base being added via buret
> Solution in buret is called the "titrant"
- Equivalence Point: Point in a titration curve where stoichiometric amounts of acid and base have been mixed (point of complete reaction)
- 3 Important Cases:

Strong Acid + Strong Base (\& vice versa)
Weak Acid + Strong Base
Weak Base + Strong Acid

Titration Curves

- Titration Curve: Plot of measured pH versus Volume of acid or base added during a "Neutralization" experiment
- All Titration Curves have a characteristic
"Sigmoid (S-shaped) profile
> Beginning of Curve: pH changes slowly
> Middle of Curve: pH changes very rapidly
> End of Curve:
pH changes very slowly again
- pH changes very rapidly in the titration as the equivalence point (point of complete reaction) is reached and right after the equivalence point

Neutralization Reactions

- Acids and Bases react with each other to form salts (not always) and water (not always) through

Neutralization Reactions

- Neutralization reaction between a strong acid and strong base

$$
\begin{array}{ccc}
\mathrm{HNO}_{3}(\mathrm{aq})
\end{array}+\underset{\mathrm{KOH}(\mathrm{aq})}{\text { acid }} \underset{\text { base }}{\mathrm{KNO}_{3}(\mathrm{aq})}+\underset{2}{\mathrm{H}_{2} \mathrm{O}(\mathrm{I})}
$$

- Neutralization of a strong acid and strong base reaction lies very far to the right (K_{n} is very large); reaction goes to completion; net ionic equation is

$$
\begin{gathered}
\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
\mathrm{K}_{\mathrm{n}}=\frac{\left[\mathrm{H}_{2} \mathrm{O}^{2}\right.}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}=\frac{1}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}=\frac{1}{\mathrm{~K}_{\mathrm{w}}}=\mathbf{1} \times 10^{14}
\end{gathered}
$$

- $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}efficiently react with each other to form water

Titration Curves

Curve for Titration of a Strong Acid by a Strong Base

Neutralization Reactions

- Neutralization reactions between weak acids and strong bases (net ionic equation shown below)

$$
\underset{\text { benzoic acid }}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})}+\underset{\text { base }}{\mathrm{NaOH}} \leftrightarrow \underset{\text { benzoate "salt" }}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COON}(\mathrm{aq})}+\underset{\text { water }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{I})}
$$

- The above equilibrium lies very far to the right

The two equilibria below can be added together to provide the overall neutralization reaction shown above
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{a}}=1.7 \times 10^{-5} \quad \text { (from Appendix C) }
$$

(2) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\begin{gathered}
\text { Recall: } \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
1 / \mathrm{K}_{\mathrm{w}}=\left(1 \times 10^{-14}\right)^{-1}=1 \times 10^{14}
\end{gathered}
$$

Neutralization Reactions

- The overall neutralization equilibrium constant $\left(\mathrm{K}_{\mathrm{n}}\right)$ is the product of the two intermediate equilibrium constants

$$
\begin{aligned}
& \left(K_{\mathrm{a}} \& 1 / \mathrm{K}_{\mathrm{w}}\right) \\
& \mathrm{K}_{\mathrm{N}}=\mathrm{K}_{\mathrm{a}} \times 1 / \mathrm{K}_{\mathrm{w}}=\left(1.7 \times 10^{-5}\right)\left(1 \times 10^{14}\right)=1.9 \times 10^{9} \\
& \text { (very large!) }
\end{aligned}
$$

- Weak acids react completely with strong bases

Titration Curves

Curve for Titration of a Weak Acid by a Strong Base

Weak Acid-Strong Base Titration Curve

- Consider the reaction between Propanoic Acid (weak acid) and Sodium Hydroxide (NaOH) (strong base)
- K_{a} for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{HPr})-1.3 \times 10^{-5}$
- The Titration Curve (see previous slide)
> The bottom dotted curve corresponds to the strong acid-strong base titration
> The Curve consists of 4 regions, the first 3 of which differ from the strong acid case
- The initial pH is "Higher"
* The weak acid dissociates only slightly producing less $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$than with a strong acid
- The gradually arising portion of the curve before the steep rise to the equivalence point is called the "buffer region"

Weak Acid-Strong Base Titration Curve

- As HPr reacts with the strong base, more and more of the conjugate base (Pr^{-}) forms creating an ($\mathrm{HPr} / \mathrm{Pr})^{-}$) buffer
- At the midpoint of the "Buffer" region, half the original HPr has reacted

$$
\begin{gathered}
{[\mathrm{HPr}]=\left[\mathrm{Pr}^{-}\right] \text {or } \frac{\left[\mathrm{Pr}^{-}\right]}{[\mathrm{HPr}]}=1} \\
\mathrm{pH}=\mathrm{Pk}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{Pr}^{-}\right]}{[\mathrm{HPr}]}\right)=\mathrm{pK}_{\mathrm{a}}+\log (1)=\mathrm{pK}_{\mathrm{a}}
\end{gathered}
$$

pH at midpoint of "Buffer" region is common method of estimating pK_{a} of an "unknown" acid

Weak Acid-Strong Base Titration Curve

- The pH at the "equivalence point" is greater than 7.00
- The weak-acid anion (Pr^{-}) acts as a weak base to accept a proton from $\mathrm{H}_{2} \mathrm{O}$ forming OH^{-}
- The additional $\left[\mathrm{OH}^{-}\right]$raises the pH
- Beyond the equivalence point, the ph increases slowly as excess OH^{-}is added

Weak Base-Strong Acid Titration

- Neutralization reactions between weak bases and strong acids (net ionic equation shown below)

$$
\underset{\text { base }}{\mathrm{NH}_{3}(\mathrm{aq})}+\underset{\text { basid }}{\mathrm{H}_{3} \mathrm{O}+(\mathrm{aq})} \leftrightarrow \underset{\text { salt }}{\mathrm{NH}_{4}+(\mathrm{aq})}+\underset{\text { water }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})} \underset{\mathrm{N}}{\mathrm{~K}}=\text { ? }
$$

- Above equilibrium also lies very far to the right; the two equilibria below can be added together to provide the overall neutralization reaction shown above

$$
\begin{aligned}
& \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}-(\mathrm{aq}) \\
& \mathrm{H}_{3} \mathrm{O}+(\mathrm{aq})+\mathrm{OH}=1.8 \times 10^{-5} \\
& \mathrm{~K}_{\mathrm{N}}=\mathrm{K}_{\mathrm{b}} \times 1 / \mathrm{K}_{\mathrm{w}}=\left(1.8 \times 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad 1 / \mathrm{K}_{\mathrm{w}}=1.5\right)\left(1 \times 10^{14}\right)=1.8 \times 10^{14} \\
& (\text { very large! })
\end{aligned}
$$

- Weak bases react completely with strong acids

Weak Base-Strong Acid Titration

Curve for Titration of a Weak Base by a Strong Acid

Polyprotic Acid Titrations

- Polyprotic Acids have more than one ionizable proton
- Except for Sulfuric Acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, the common polyprotic acids are all weak acids
- Successive K_{a} values for a polyprotic acid differ by several orders of magnitude
- The first H^{+}is lost much more easily than subsequent ones
- All "1 1 st" protons $\left(\mathrm{H}^{+}\right)$are removed before any of the "2nd" protons

$$
\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{a} 1}=1.4 \times 10^{2} \quad \text { and } \quad \mathrm{pK}_{\mathrm{a} 1}=1.85
$$

$\mathrm{HSO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{SO}_{3}{ }^{2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{a} 2}=6.5 \times 10^{-8} \text { and } \mathrm{pK}_{\mathrm{a} 2}=7.19
$$

Polyprotic Acid Titrations

- Each mole of H^{+}is titrated separately
- In a diprotic acid two OH^{-}ions are required to completely remove both H^{+}ions
- All $\mathrm{H}_{2} \mathrm{SO}_{3}$ molecules lose one H^{+}before any HSO_{3}^{-}ions lose a H^{3} to form SO_{3}^{-}

$$
\mathrm{H}_{2} \mathrm{SO}_{3} \xrightarrow{1 \mathrm{mmoliH}} \mathrm{HSO}_{3}^{-} \xrightarrow{\text { Imol OH }} \mathrm{SO}_{3}{ }^{2 .}
$$

Titration curves looks like two weak acid-strong base curves joined end-to-end
$\mathrm{HSO}_{3}{ }^{-}$is the conjugate base of $\mathrm{H}_{2} \mathrm{SO}_{3}\left(\mathrm{~Kb}=7.1 \times 10^{-13}\right)$
HSO_{3}^{-}is also an acid $\left(\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-8}\right)$ dissociating to form its conjugate base $\mathrm{SO}_{3}{ }^{2-}$

Slightly Soluble Compounds

- Most solutes, even those called "soluble," have a limited solubility in a particular solvent
- In a saturated solution, at a particular temperature, equilibrium exists between the dissolved and undissolved solute

■ Slightly soluble ionic compounds, normally called "insoluble," reach equilibrium with very little of the solute dissolved

- Slightly soluble compounds can produce complex mixtures of species
- Discussion here is to assume that the small amount of a slightly soluble solute that does dissolve, dissociates completely

Equilibria - Slightly Soluble Ionic Compounds

Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds

1. All common compounds of Group $1 \mathrm{~A}(1)$ ions $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}\right.$, K^{+}, etc.) and ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right.$) are soluble.
2. All common nitrates $\left(\mathrm{NO}_{3}{ }^{-}\right)$, acetates $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right.$or $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$), and most perchlorates $\left(\mathrm{ClO}_{4}{ }^{-}\right)$are soluble.
3. All common chlorides $\left(\mathrm{Cl}^{-}\right)$, bromides $\left(\mathrm{Br}^{-}\right)$, and iodides $\left(\mathrm{I}^{-}\right)$are soluble, except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Cu}^{+}$, and $\mathrm{Hg}_{2}{ }^{2+}$. All common fluorides $\left(\mathrm{F}^{-}\right)$are soluble, except those of Pb^{2+} and Group 2A(2).
4. All common sulfates $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ are soluble, except those of $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ag}^{+}$, and Pb^{2+}.

Insoluble Ionic Compounds

1. All common metal hydroxides are insoluble, except those of Group $1 \mathrm{~A}(1)$ and the larger members of Group 2A(2) (beginning with Ca^{2+}).
2. All common carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and phosphates $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ are insoluble, except those of Group $1 \mathrm{~A}(1)$ and $\mathrm{NH}_{4}{ }^{+}$.
3. All common sulfides are insoluble except those of Group $1 \mathrm{~A}(1)$, Group $2 \mathrm{~A}(2)$, and $\mathrm{NH}_{4}{ }^{+}$.

Equilibria - Slightly Soluble Ionic Compounds

- Equilibrium exists between solid solute and the aqueous ions

$$
\mathrm{PbSO}_{4}(\mathrm{~s}) \rightleftarrows \mathrm{Pb}^{2+}(\mathrm{aq}) \quad+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
$$

- Set up "Reaction Quotient"

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{c}} & =\frac{\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{SO}_{4}^{2 .}\right]}{\left[\mathrm{PbSO}_{4}(\mathrm{~s})\right]} \\
\mathrm{Q}_{\mathrm{c}}\left[\mathrm{PbSO}_{4}(\mathrm{~s})\right] & =\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{SO}_{4}^{2+}\right]
\end{aligned}
$$

Note: concentration of a solid $-\left[\mathrm{PbSO}_{4}(\mathrm{~s})\right]=1$

- Define Solubility Product

$$
\mathrm{Q}_{\mathrm{sp}}=\mathrm{Q}_{\mathrm{c}}\left[\mathrm{PbSO}_{4}(\mathrm{~s})\right]=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2 \cdot}\right]
$$

- When solid PbSO_{4} reaches equilibrium with Pb^{2+} and SO_{4}^{-} at saturation, the numerical value of $\mathrm{Q}_{\text {sp }}$ attains a constant value called the solubility-product constant (K_{sp})
Q_{sp} at saturation $=\mathrm{K}_{\mathrm{sp}}=$ solubility - product constant

Equilibria - Slightly Soluble Ionic Compounds

- The Solubility Product Constant (K_{sp})
> Value of K_{sp} depends only on temperature, not individual ion concentrations
> Saturated solution of a slightly soluble ionic compound, $\mathrm{M}^{\mathrm{P}} \mathrm{X}^{\mathrm{q}}$, composed of ions $\mathrm{M}^{\mathrm{n+}}$ and X^{z}, the equilibrium condition is:

$$
\mathbf{Q}_{\mathrm{sp}}=\left[\mathbf{M}^{\mathrm{n}+}\right]^{\mathrm{p}}\left[\mathbf{X}^{\mathrm{Z-}}\right]^{\mathrm{q}}=\mathbf{K}_{\mathrm{sp}}
$$

Equilibria - Slightly Soluble Ionic Compounds

> Single-Step Process

$$
\begin{aligned}
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \square & \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{sp}}= & {\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} }
\end{aligned}
$$

> Multi-Step Process

$$
\begin{array}{cl}
\mathrm{MnS}(\mathrm{~s}) & \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{S}^{2}(\mathrm{aq}) \\
\mathrm{S}^{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square & \mathrm{HS}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\hline \mathrm{MnS}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square & \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{array}
$$

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Mn}^{2+}\right]\left[\mathrm{HS}^{-}\right]\left[\mathrm{OH}^{-}\right]
$$

Equilibria - Slightly Soluble Ionic Compounds

Solubility-Product Constants ($K_{\text {sp }}$) of Selected Ionic Compounds at $25^{\circ} \mathrm{C}$	
Name, Formula	$K_{\text {sp }}$
Aluminum hydroxide, $\mathrm{Al}(\mathrm{OH})_{3}$	3×10^{-34}
Cobalt(II) carbonate, CoCO_{3}	1.0×10^{-10}
Iron(II) hydroxide, $\mathrm{Fe}(\mathrm{OH})_{2}$	4.1×10^{-15}
Lead(II) fluoride, PbF_{2}	3.6×10^{-8}
Lead(II) sulfate, PbSO_{4}	1.6×10^{-8}
Mercury(I) iodide, $\mathrm{Hg}_{2} \mathrm{I}_{2}$	4.7×10^{-29}
Silver sulfide, $\mathrm{Ag}_{2} \mathrm{~S}$	8×10^{-48}
Zinc iodate, $\mathrm{Zn}\left(\mathrm{IO}_{3}\right)_{2}$	3.9×10^{-6}

	Relationship Between $\boldsymbol{K}_{\text {sp }}$ and Solubility at $\mathbf{2 5} 5^{\circ} \mathbf{C}$			
No. of lons	Formula	Cation/Anion	$\boldsymbol{K}_{\text {sp }}$	Solubility (\boldsymbol{M})
2	MgCO_{3}	$1 / 1$	3.5×10^{-8}	1.9×10^{-4}
2	PbSO_{4}	$1 / 1$	1.6×10^{-8}	1.3×10^{-4}
2	BaCrO_{4}	$1 / 1$	2.1×10^{-10}	1.4×10^{-5}
3	$\mathrm{Ca}(\mathrm{OH})_{2}$	$1 / 2$	6.5×10^{-6}	1.2×10^{-2}
3	BaF_{2}	$1 / 2$	1.5×10^{-6}	7.2×10^{-3}
3	CaF_{2}	$1 / 2$	3.2×10^{-11}	2.0×10^{-4}
3	$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	$2 / 1$	2.6×10^{-12}	8.7×10^{-5}

Equilibria - Slightly Soluble Ionic Compounds

- The Effect of the Common Ion
> The presence of a "Common Ion" decreases the solubility of a slightly soluble ionic compound

$$
\begin{gathered}
\mathrm{PbCrO}_{4}(\mathrm{~s}) \square \quad \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{CrO}_{4}{ }^{2 .}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{CrO}_{4}{ }^{2 \cdot}\right]=2.3 \times 10^{-13}
\end{gathered}
$$

> Add some $\mathrm{Na}_{2} \mathrm{CrO}_{4}$, a soluble salt, to the saturated PbCrO_{4} solution

- Concentration of $\mathrm{CrO}_{4}{ }^{2-}$ increases
- Some of excess $\mathrm{CrO}_{4}{ }^{2-}$ combines with Pb^{2+} to form $\mathrm{PbCrO}_{4}(\mathrm{~s})$
- Equilibrium shifts to the "Left"
- This shift "reduces" the solubility of PbCrO_{4}

Equilibria - Slightly Soluble Ionic Compounds

- The Effect of pH on Solubility
> The Hydronium Ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$of a strong acid increases the solubility of a solution containing the anion of a weak acid (HA$)$
> Adding some strong acid to a saturated solution of Calcium Carbonate $\left(\mathrm{CaCO}_{3}\right)$ introduces large amount of $\mathrm{H}_{3} \mathrm{O}+$ ion, which reacts immediately with the CaCO_{3} to form the weak acid HCO_{3}^{-}

$$
\begin{array}{cc}
\mathrm{CaCO}_{3}(\mathrm{~s}) & \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{2 \cdot}(\mathrm{aq}) \\
\mathrm{CO}_{3}^{2 \cdot}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+} & \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{array}
$$

- Additional $\mathrm{H}_{3} \mathrm{O}^{+}$reacts with the HCO_{3}^{-}to form carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$, which immediately decomposes to $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}

$$
\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+} \square \quad \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Equilibria - Slightly Soluble Ionic Compounds

- The equilibrium shifts to the "Right" and more CaCO_{3} dissolves - increased solubility
- The overall reaction is:

$$
\begin{array}{r}
\mathrm{CaCO}_{3}(\mathrm{~s}) \square \mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2 \cdot} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{HCO}_{3}^{-} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \\
\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}^{2+}
\end{array}
$$

- Adding $\mathrm{H}_{3} \mathrm{O}^{+}$to a saturated solution of a compound with a strong acid anion - AgCl
> Chloride ion, Cl^{-}, is the conjugate base of a strong acid (HCl)
> It coexists with water, i.e. does not react with water
> There is "No" effect on the equilibrium

Equilibria - Slightly Soluble Ionic Compounds

- Predicting Formation of a Precipitate
$>\mathrm{Q}_{\mathrm{sp}}=\mathrm{K}_{\mathrm{sp}}$ when solution is "saturated"
$>\mathrm{Q}_{\text {sp }}>\mathrm{K}_{\text {sp }}$ solution momentarily "supersaturated"
- Additional solid precipitates until $\mathrm{Q}_{\mathrm{sp}}=\mathrm{K}_{\mathrm{sp}}$ again
$>\mathrm{Q}_{\text {sp }}<\mathrm{K}_{\text {sp }}$ solution is "unsaturated"
- No precipitate forms at that temperature
- More solid dissolves until $\mathrm{Q}_{\mathrm{sp}}=\mathrm{K}_{\mathrm{sp}}$

Equilibria - Slightly Soluble Ionic Compounds

- Selective Precipitation of Ions
> Separation of one ion in a solution from another
> Exploit differences in the solubility of their compounds
> The $K_{\text {sp }}$ of the less soluble compound is much smaller than the K_{sp} of the more soluble compound
> Add solution of precipitating ion until the $\mathrm{Q}_{\text {sp }}$ value of the more soluble compound is almost equal to its K_{sp} value
> The less soluble compound continues to precipitate while the more soluble compound remains dissolved, i.e., the $K_{s p}$ of the less soluble compound is always being exceeded, i.e. precipitation is occurring
> At equilibrium, most of the ions of the less soluble compound have been removed as the precipitate

Equilibria - Slightly Soluble Ionic Compounds

- Equilibria Involving Complex Ions
> The product of any Lewis acid-base reaction is called an "Adduct", a single species that contains a new covalent bond

$$
\mathbf{A}+: \mathbf{B} \quad \square \quad \mathbf{A}-\mathbf{B} \quad \text { (Adduct) }
$$

> A complex ion consists of a central metal ion covalently bonded to two or more anions or molecules, called ligands

$$
\begin{array}{llll}
\text { Ionic ligands } & -\mathrm{OH}^{-} \mathrm{Cl}^{-} & \mathrm{CN}^{-} \\
\text {Molecular ligands }- & \mathrm{H}_{2} \mathrm{O} & \mathrm{CO} & \mathrm{NH}_{3}
\end{array}
$$

$\mathrm{Ex} \mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}$
Cr^{3+} is the central metal ion
NH_{3} molecules are molecular ligands
> Metal acts as Lewis Acid by accepting electron pair; ligands acts as Lewis base by donating electron pair
> All complex ions are Lewis adducts

Equilibria - Slightly Soluble Ionic Compounds

- Complex Ions
> Acidic Hydrated metal ions are complex ions with water molecules as ligands
$>$ When the hydrated cation is treated with a solution of another ligand, the bound water molecules exchange for the other ligand

$$
\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \square \quad \mathrm{M}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

> At equilibrium

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}{\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}}
$$

> Water is constant in aqueous reactions
$>$ Incorporate in K_{c} to define K_{f} (formation constant)

$$
\mathrm{K}_{\mathrm{r}}=\frac{\mathrm{K}_{\mathrm{c}}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}=\frac{\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}\right]}{\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}}
$$

Equilibria - Slightly Soluble Ionic Compounds

- Complex Ions (Con't)
> The actual process is stepwise, with ammonia molecules replacing water molecules one at a time to give a series of intermediate species, each with its own formation constant $\left(\mathrm{K}_{\mathrm{f}}\right)$

$$
\begin{aligned}
\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}(\mathrm{aq}) & +\mathrm{NH}_{3}(\mathrm{aq}) \square \quad \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\mathrm{K}_{\mathrm{fI}} & =\frac{\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)^{2+}\right.}{\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }_{4}^{2+}\right]\left[\mathrm{NH}_{3}\right]}
\end{aligned}
$$

$>$ The sum of the 4 equations gives the overall equation
$>$ The product of the individual formation constants gives the overall formation constant
> The K_{f} for each step is much larger than "1" because "ammonia" is a stronger Lewis base than $\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{K}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f} 1} \times \mathrm{K}_{\mathrm{r} 2} \times \mathrm{K}_{\mathrm{r} 3} \times \mathrm{K}_{\mathrm{r} 4}
$$

$>$ Adding excess NH_{3} replaces all $\mathrm{H}_{2} \mathrm{O}$ and all M^{2+} exists as $\mathrm{M}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$

Complex Ions - Solubility of Precipitates

- Increasing $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases solubility of slightly soluble ionic compounds if the anion of the compound is that of a weak acid
- A Ligand increases the solubility of a slightly soluble ionic compound if it forms a complex ion with the cation

$$
\begin{gathered}
\mathrm{ZnS}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{sp}}=2.0 \times 10^{-22}
\end{gathered}
$$

- When 1.0 M NaCN is added to the above solution, the CN^{-}ions act as ligands and react with the small amount of $\mathrm{Zn}^{2+}(\mathrm{aq})$ to form a complex ion

$$
\begin{gathered}
\mathrm{Zn}^{2+}(\mathrm{aq})+4 \mathrm{CN}(\mathrm{aq}) \square \mathrm{Zn}(\mathrm{CN})_{4}^{2 .}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{f}}=4.2 \times 10^{19}
\end{gathered}
$$

Complex Ions - Solubility of Precipitates

- Add the two reactions and compute the overall K

$$
\begin{aligned}
& \mathrm{ZnS}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{Zn}^{2+}(\mathrm{aq})+4 \mathrm{CN}^{-}(\mathrm{aq}) \quad \square \quad \mathrm{Zn}(\mathrm{CN})_{4}^{{ }^{-}}(\mathrm{aq})
\end{aligned}
$$

$\mathrm{ZnS}(\mathrm{s})+4 \mathrm{CN}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \square \quad \mathrm{Zn}(\mathrm{CN})_{4}{ }^{2 \cdot}+\mathrm{HS}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{\text {overall }}=\mathrm{K}_{\mathrm{sp}} \times \mathrm{K}_{\mathrm{f}}=\left(2.0 \times 10^{-22}\right)\left(4.2 \times 10^{19}\right)=8.4 \times 10^{-3}
$$

- The overall equilibrium constant, $\mathrm{K}_{\text {overall }}$, is more than a factor of 10^{19} larger than the original $\mathrm{K}_{\text {sp }}\left(2.0 \times 10^{-22}\right)$
- This reflects the increased amount of ZnS in solution as $\mathrm{Zn}\left(\mathrm{CN}_{4}{ }^{2-}\right)$

Ionic Equilibria in Aqueous Solutions

- Equilibria Involving Complex Ions
> Amphoteric Oxides \& Hydroxides (Recall Chapter 8)
- Some metals and many metalloids form oxides or hydroxides that are amphoteric; they can act as acids or bases in water
- These compounds generally have very little solubility in water, but they do dissolve more readily in acids or bases
- Ex. Aluminum Hydroxide

$$
\begin{gathered}
\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s}) \leftrightarrows \mathrm{Al}^{3+}(\mathrm{aq})+30 \mathrm{H}^{-}(\mathrm{ag}) \\
\mathrm{K}_{\mathrm{sp}}=3 \times 10^{-34} \quad \text { (very insoluble in water) }
\end{gathered}
$$

- In acid solution, the OH^{-}reacts with $\mathrm{H}_{3} \mathrm{O}^{+}$to form water

$$
\frac{3 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{ag})+3 \mathrm{OA}(\mathrm{aq}) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})}{\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightarrow \mathrm{Al}^{3+}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})}
$$

Ionic Equilibria in Aqueous Solutions

■ Equilibria Involving Complex Ions

- Aluminum Hydroxide in basic solution

$$
\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})
$$

- The above reaction is actually a much more complex situation, involving multiple species
- When dissolving an aluminum salt, such as $\mathrm{Al}\left(\mathrm{NO}_{3}\right)$, in a strong base (NaOH), a precipitate forms initially and then dissolves as more base is added
- The formula for hydrated Al^{3+} is $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$
- $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ acts as a "weak polyprotic acid and reacts with added OH^{-}in a stepwise removal of the $\mathrm{H}_{2} \mathrm{O}$ ligands attached to the hydrated Al

Ionic Equilibria in Aqueous Solutions

- Amphoteric Aluminum Hydroxide in basic solution

$$
\begin{aligned}
& \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{Al}_{2} \mathrm{H}_{2} \mathrm{O}_{5} \mathrm{OH}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}^{2+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}_{3}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right.
\end{aligned}
$$

- $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}(\mathrm{~s})$ is more simply written $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$
- As more base is added, a $4^{\text {th }} \mathrm{H}^{+}$is removed from a $\mathrm{H}_{2} \mathrm{O}$ ligand and the soluble ion $\left.\mathrm{Al}^{(} \mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}{ }^{-}(\mathrm{aq})$ forms

$$
\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}^{-}(\mathrm{aq})
$$

The ion is normally written as $\mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})$

