- Equilibria of Acid-Base Buffer Systems
 - The Common Ion Effect
 - The Henderson-Hasselbalch Equation
 - Buffer Capacity and Range
 - Preparing a buffer
- Acid-Base Titration Curves
 - > Acid-Base Indicators
 - Strong-Acid-Strong Base Titrations
 - Weak Acid-Strong Base Titrations
 - Weak Base-Strong Acid Titrations
 - Polyprotic Acid Titrations
 - > Amino Acids as Polyprotic Acids

- Equilibria of Slightly Soluble Ionic Compounds
 - The Solubility-Product Constant
 - Calculations involving K_{sp}
 - The Effect of a Common Ion
 - The Effect of pH
 - \succ Q_{sp} vs. K_{sp}
- Equilibria involving Complex Ions
 - Formation of Complex Ions
 - Complex Ions and Solubility
 - > Amphoteric Hydroxides

Ionic Equilibria in Aqueous Solutions
 The simplest acid-base equilibria are those in which a single acid or base solute reacts with water

In this chapter, we will look at:

> solutions of weak acids and bases through acid/base ionization

> The reactions of salts with water

> Titration curves

All of these processes involve equilibrium theory

Ionic Equilibria in Aqueous Solutions
 Equilibria of Acid-Base Buffer Systems

- Buffer
 - An Acid-Base Buffer is a species added to an solution to minimize the impact on pH from the addition of [H₃O⁺] or [OH⁻] ions
 - Small amounts of acid or base added to an unbuffered solution can change the pH by several units
 - Since pH is a logarithmic term, the change in [H₃O⁺] or [OH⁻] can be several orders of magnitude

Ionic Equilibria in Aqueous SolutionsThe Common Ion Effect

Buffers work through a phenomenon known as the:

Common Ion Effect

- The common ion effect occurs when a given ion is added to an "equilibrium mixture of a <u>weak</u> acid or weak base that <u>already contains that ion</u>
- The additional "common ion" shifts the equilibrium away from its formation to more of the undissociated form; i.e., <u>the acid or base</u> <u>dissociation decreases</u>
- A buffer must contain an "acidic" component that can react with the added OH⁻ ion, and a "basic" component than can react with the added [H₃O⁺]

- The buffer components cannot be just any acid or base
- The components of a buffer are usually the conjugate acid-base pair of the weak acid (or base) being buffered
- Ex: Acetic Acid & Sodium Acetate

Acetic acid is a weak acid, slightly dissociated

- Ex: Acetic Acid & Sodium Acetate (Con't)
 - Now add Sodium Acetate (CH₃COONa), a strong electrolyte (<u>Acetate ion is the conjugate base</u>)

 $CH_{3}COOH(aq) + H_{2}O(I) \leftrightarrow H_{3}O^{+}(aq) + CH_{3}COO^{-}(aq)$ (added)
(added)

- The added Acetate ions shift the equilibrium to the left forming more undissociated acetic acid
- This lowers the extent of acid dissociation, which lowers the acidity by reducing the [H₃O⁺] and increasing the pH
- Similarly, if Acetic Acid is added to a solution of Sodium Acetate, the Acetate ions already present act to suppress the dissociation of the acid

When a <u>small</u> amount of $[H_3O^+]$ is add to acetic acid/acetate buffer, that same amount of acetate ion (CH₃COO⁻) combines with it, increasing the concentration of acetic acid (CH₃COOH). The change in the [HA]/[A-] ratio is small; the added $[H_3O^+]$ is effectively tied up; thus, the change $_{4/28/200}$ PH is also small Ionic Equilibria in Aqueous SolutionsEssential Features of a Buffer

A buffer consists of high concentrations of the undissociated acidic component [HA] and the conjugate base [A⁻] component

When small amounts of [H₃O⁺] or [OH⁻] are added to the buffer, they cause small amounts of one buffer component to convert to the other component

Ex. When a small amount of H₃O⁺ is added to an Acetate buffer, that same amount of CH₃COO⁻ combines with it, increasing the amount of undissociated CH₃COOH tying up potential [H₃O⁺]

Similarly, a small amount of OH^{-} added combines with undissociated $CH_{3}COOH$ to form $CH_{3}COO^{-} \& H_{2}O$ tying up potential [OH⁻]

In both cases, the relative changes in the amount of buffer components is small, but the added $[H_3O^+]$ or $[OH^-]$ ions are tied up as undissociated components; thus little impact on pH

Ionic Equilibria in Aqueous Solutions The equilibrium perspective $CH_3COOH + H_2O = H_3O^+ + CH_3COO^ K_a = \frac{[H^+][A^-]}{HA} = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}$ $[H_3O^+] = K_a \times \frac{[HA]}{[A^-]} = K_a \times \frac{[CH_3COOH]}{[CH_3COO^-]}$

- The [H₃O⁺] (pH) of the solution depends directly on the buffer-component concentration ratio
- > If the ratio $[HA]/[A^-]$ goes up, $[H_3O^+]$ goes up (pH down)
- If the ratio [HA]/[A⁻] goes down, [H₃O⁺] goes down ([OH⁻] goes up) and pH increases (less acidic)
- When a small amount of a strong acid is added, the increased amount of [H₃O⁺] reacts with a stoichiometric amount of acetate ion from the buffer to form more undissociated acetic acid

Ionic Equilibria in Aqueous Solutions The <u>Henderson-Hasselbalch</u> Equation For any weak acid, HA, the dissociation equation and K_a expression are: $HA + H_2O \square H_3O^+ + A^ \mathbf{K}_{\mathbf{a}} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{A}^{-}]}{[\mathbf{H}\mathbf{A}]}$ The key variable that determines the $[H_3O^+]$ is the ratio of acid species (HA) to base species (\tilde{A}) $[H_3O^+] = k_a \times \frac{[HA](acid species)}{[A^-](base species)}$ $-\log[H_3O^+] = -\log K_a - \log \frac{[HA]}{[A^-]}$ Note the change in sign of $\mathbf{pH} = \mathbf{pK}_{\mathbf{a}} + \log \frac{[\mathbf{A}^*]}{[\mathbf{HA}]}$ "log" term and inversion of acid-base terms $pH = pK_a + log \frac{[base]}{[acid]}$

Buffer Capacity

- A buffer resists a pH change as long as the concentration of buffer components are <u>large</u> <u>compared with the amount of strong acid or base</u> <u>added</u>
- Buffer Capacity is a measure of the ability to resist pH change
- Buffer capacity depends on both the absolute and relative component concentrations
 - Absolute The more concentrated the components of a buffer, the greater the buffer capacity
 - Relative For a given addition of acid or base, the buffer-component concentration ratio changes less when the concentrations are similar than when they are different

- Ex. Consider 2 solutions
 - > Solution 1 Equal volumes of 1.0M HAc and 1.0 M Ac⁻
 - Solution 2 Equal volumes of 0.1M HAc and 0.1M Ac⁻
 - Same pH (4.74) but 1.0 M buffer has much larger buffer capacity

Ionic Equilibria in Aqueous Solutions Buffer #2 [HA] = 0.250 M $[A^-] = 1.75 \text{ M}$ Add 0.010 mol of OH⁻ to 1.00 L of buffer [A⁻] changes to 1.760 M [HA] changes to 0.240 M $\frac{[A^{-}]_{init}}{[HA]_{init}} = \frac{1.750 \text{ M}}{0.250 \text{ M}} = 7.000$ $\frac{[A^{-}]_{\text{final}}}{[HA]_{\text{final}}} = \frac{1.760 \text{ M}}{0.240 \text{ M}} = 7.330$ Percent change = $\frac{7.330 - 7.000}{7.000} \times 100 = 4.7\%$ Buffer-component concentration ratio is much larger when the initial concentrations of the components are very different

Ionic Equilibria in Aqueous Solutions
 A buffer has the highest capacity when the component acid / base concentrations are equal:

 $\frac{\begin{bmatrix} \text{Base} \end{bmatrix}}{\begin{bmatrix} \text{Acid} \end{bmatrix}} = \frac{\begin{bmatrix} \text{A}^{-} \end{bmatrix}}{\begin{bmatrix} \text{HA} \end{bmatrix}} = 1$

$$\mathbf{pH} = \mathbf{pK}_{\mathbf{a}} + \log\left(\frac{[\mathbf{A}^{-}]}{[\mathbf{HA}]}\right) = \mathbf{pK}_{\mathbf{a}} + \log\mathbf{1} = \mathbf{pK}_{\mathbf{a}} + \mathbf{0} = \mathbf{pK}_{\mathbf{a}}$$

A buffer whose pH is equal to or near the pK_a of its acid component has the highest buffer capacity

Ionic Equilibria in Aqueous SolutionsBuffer Range

- PH range over which the buffer acts effectively is related to the relative component concentrations
- The further the component concentration ratio is from 1, the less effective the buffering action
- If the [A⁻]/[HA] ratio is greater than 10 or less than 0.1 (or one component concentration is more than 10 times the other) the buffering action is poor

$$pH = pK_a + log\left(\frac{10}{1}\right) = pK_a + 1$$
 $pH = pK_a + log\left(\frac{1}{10}\right) = pK_a - 1$

Buffers have a usable range within:

 \pm 1 pH unit or pK_a value of the acid components

Ionic Equilibria in Aqueous Solutions
Equilibria of Acid-Base Systems

- Preparing a Buffer
 - Choose the Conjugate Acid-Base pair
 - Driven by pH
 - Ratio of component concentrations close to 1 and pH \approx pK_a

Ex. Assume you need a biochemical buffer whose pH is 3.9 1. pKa of acid component should be close to 3.9 $K_a = 10^{-3.9} = 1.3 \times 10^{-4}$ 2. From a table of pK_a values select buffer possibilities Lactic acid (pK_a = 3.86) Glycolic acid (pK_a = 3.83) Formic Acid (pK_a = 3.74)

3. To avoid common biological species, select Formic Acid

Buffer components of Formic Acid

Formic Acid – HCOOH(Acid)Formate Ion – HCOO⁻(Conjuagte Base)Obtain soluble Formate salt – HCOONa

Con't

 Calculate Ratio of Buffer Component Concentrations ([A⁻]/[HA]) that gives desired pH

$$\mathbf{pH} = \mathbf{Pka} + \log\left(\frac{\mathbf{[A^{\text{-}}]}}{\mathbf{[HA]}}\right)$$

 $3.9 = 3.74 + \log\left(\frac{[\text{HCOO}^{-}]}{[\text{HCOOH}]}\right)$

$$log\left(\frac{[HCOO^{-}]}{[HCOOH]}\right) = 3.9 - 3.74 = 0.16$$

Thus: $\left(\frac{[\text{HCOO}^{-}]}{[\text{HCOOH}]}\right) = 10^{0.16} = 1.4$

Con't

- Preparing a Buffer (Con't)
 - Determine the Buffer Concentrations
 - The higher the concentration of the components, the higher the buffer capacity
 - Assume 1 Liter of buffer is required and you have a stock of 0.40 M Formic Acid (HCOOH)
 - Compute moles and then grams of Sodium Formate (CHOONa) needed to produce 1.4/1.0 ratio

- Preparing a Buffer (Con't)
 - Mix the solution and adjust the pH
 - The prepared solution may not be an ideal solution (see Chapter 13, Section 6)

The desired pH (3.9) may not exactly match the actual value of the buffer solution

 The pH of the buffer solution can be adjusted by a few tenths of a pH unit by adding strong acid or strong base.

- Acid-Base Titration Curves
 - > Acid-Base Indicators
 - Weak organic acid (HIn) that has a different color than its conjugate base (In⁻)
 - The color change occurs over a relatively narrow pH range
 - Only small amounts of the indicator are needed; too little to affect the pH of the solution
 - The color range of typical indicators reflects a 100 - fold range in the [HIn]/In⁻] ratio
 - This corresponds to a pH range of 2 pH units

Mixing Acids & Bases

- Acids and bases react through neutralization reactions
- The change in pH of an acid mixed with a base is tracked with an Acid-Base Titration Curve
- Titration:
 - Titration Curve: Plot of pH vs. the volume of the "Strong" acid or "Strong" base being added via buret
 - Solution in buret is called the "titrant"
- Equivalence Point: Point in a titration curve where stoichiometric amounts of acid and base have been mixed (point of complete reaction)
- 3 Important Cases:

Strong Acid + Strong Base (& vice versa) Weak Acid + Strong Base Weak Base + Strong Acid

Titration Curves

- Titration Curve: Plot of measured pH versus Volume of acid or base added during a "Neutralization" experiment
- All Titration Curves have a characteristic

"Sigmoid (S-shaped) profile

- Beginning of Curve: pH changes slowly
- Middle of Curve: pH changes very rapidly
- End of Curve: pH changes very slowly again
- PH changes very rapidly in the titration as the equivalence point (point of complete reaction) is reached and right after the equivalence point

Neutralization Reactions

Acids and Bases react with each other to form salts (not always) and water (not always) through

Neutralization Reactions

Neutralization reaction between a strong acid and strong base $HNO_3(aq) + KOH(aq) \rightarrow KNO_3(aq) + H_2O(I)$ acid
base
salt
water

Neutralization of a strong acid and strong base reaction lies very far to the *right* (K_n is very large); reaction goes to completion; net ionic equation is

 $H_{3}O^{+}(aq) + OH^{-}(aq) \leftrightarrow 2 H_{2}O(I)$ $K_{n} = \frac{[H_{2}O]^{2}}{[H_{3}O^{+}][OH^{-}]} = \frac{1}{[H_{3}O^{+}][OH^{-}]} = \frac{1}{K_{w}} = 1 \times 10^{14}$

• H_3O^+ and OH^- efficiently react with each other to form water

Titration Curves

Curve for Titration of a Strong Acid by a Strong Base

Neutralization Reactions

- Neutralization reactions between weak acids and strong bases (net ionic equation shown below)
- The above equilibrium lies very far to the right
 - The two equilibria below can be added together to provide the overall neutralization reaction shown above (1) $C_6H_5COOH(aq) + H_2O(l) \leftrightarrow C_6H_5COO^-(aq) + H_3O^+(aq)$ $K_a = 1.7 \times 10^{-5}$ (from Appendix C) (2) $H_3O^+(aq) + OH^-(aq) \leftrightarrow 2 H_2O(l)$ **Recall**: $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ $1/K_w = (1 \times 10^{-14})^{-1} = 1 \times 10^{14}$

Neutralization Reactions

The overall neutralization equilibrium constant (K_n) is the product of the two intermediate equilibrium constants

 $(K_a \& 1/K_w)$

 $K_N = K_a \times 1/K_w = (1.7 \times 10^{-5})(1 \times 10^{14}) = 1.9 \times 10^9$ (very large!)

Weak acids react *completely* with strong bases

Titration Curves

Curve for Titration of a Weak Acid by a Strong Base

Weak Acid-Strong Base Titration Curve

- Consider the reaction between Propanoic Acid (weak acid) and Sodium Hydroxide (NaOH) (strong base)
- K_a for CH_3CH_2COOH (HPr) 1.3 x 10⁻⁵
- The Titration Curve (see previous slide)
 - The bottom dotted curve corresponds to the strong acid-strong base titration
 - The Curve consists of 4 regions, the first 3 of which differ from the strong acid case
 - The initial pH is "Higher"
 - The weak acid dissociates only slightly producing less [H₃O⁺] than with a strong acid
 - The gradually arising portion of the curve before the steep rise to the equivalence point is called the "buffer region"

Weak Acid-Strong Base Titration Curve

- As HPr reacts with the strong base, more and more of the conjugate base (Pr⁻) forms creating an (HPr/Pr⁻) buffer
- At the midpoint of the "Buffer" region, half the original HPr has reacted

 $[HPr] = [Pr] \text{ or } \frac{[Pr]}{[HPr]} = 1$ $pH = Pk_a + log\left(\frac{[Pr]}{[HPr]}\right) = pK_a + log(1) = pK_a$

pH at midpoint of "Buffer" region is common method of estimating pK_a of an "unknown" acid

Weak Acid-Strong Base Titration Curve

- The pH at the "equivalence point" is greater than 7.00
 - The weak-acid anion (Pr⁻) acts as a weak base to accept a proton from H₂O forming OH⁻
 - The additional [OH⁻] raises the pH
- Beyond the equivalence point, the ph increases slowly as excess OH⁻ is added

Weak Base-Strong Acid Titration

Neutralization reactions between <u>weak bases and strong</u> <u>acids</u> (net ionic equation shown below)

 $\begin{array}{rll} \mathsf{NH}_3(\mathsf{aq}) + \ \mathsf{H}_3\mathsf{O}^+(\mathsf{aq}) \leftrightarrow & \mathsf{NH}_4^+(\mathsf{aq}) + \ \mathsf{H}_2\mathsf{O}(\mathsf{I}) & \ \mathsf{K}_\mathsf{N}=? \\ \text{base} & \text{acid} & \text{salt} & \text{water} \end{array}$

Above equilibrium also lies very far to the right; the two equilibria below can be added together to provide the overall neutralization reaction shown above

 $NH_{3}(aq) + H_{2}O(aq) \leftrightarrow NH_{4}^{+} + OH^{-}(aq) \qquad K_{b} = 1.8 \times 10^{-5}$

 $H_3O^+(aq) + OH^-(aq) \leftrightarrow 2 H_2O(I)$ 1/K_w = 1.0 x 10¹⁴

 $K_N = K_b \times 1/K_w = (1.8 \times 10^{-5})(1 \times 10^{14}) = 1.8 \times 10^9$ (very large!)

Weak bases react *completely* with strong acids

Weak Base-Strong Acid Titration

Curve for Titration of a Weak Base by a Strong Acid

4/28/2019

Polyprotic Acid Titrations

- Polyprotic Acids have more than one ionizable proton
- Except for Sulfuric Acid (H₂SO₄), the common polyprotic acids are all weak acids
- Successive K_a values for a polyprotic acid differ by <u>several orders of magnitude</u>
- The first H⁺ is lost much more easily than subsequent ones
- All "1st" protons (H⁺) are removed before any of the "2nd" protons

 $H_2SO_3(aq) + H_2O(l) \square HSO_3(aq) + H_3O(aq)$

 $K_{a1} = 1.4 \times 10^{-2}$ and $pK_{a1} = 1.85$

 $HSO_3^{-}(aq) + H_2O(l) \square SO_3^{-2}(aq) + H_3O^{+}(aq)$

 $K_{a2} = 6.5 \times 10^{-8}$ and $pK_{a2} = 7.19$

Polyprotic Acid Titrations

- Each mole of H⁺ is titrated separately
- In a diprotic acid two OH⁻ ions are required to completely remove both H⁺ ions
- All H₂SO₃ molecules lose one H⁺ before any HSO₃⁻ ions lose a H⁺ to form SO₃⁻

Slightly Soluble Compounds

- Most solutes, even those called "soluble," have a limited solubility in a particular solvent
- In a saturated solution, at a particular temperature, equilibrium exists between the dissolved and undissolved solute
- Slightly soluble ionic compounds, normally called "insoluble," reach equilibrium with very little of the solute dissolved
- Slightly soluble compounds can produce complex mixtures of species
- Discussion here is to assume that the small amount of a slightly soluble solute that does dissolve, dissociates completely

Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds

- 1. All common compounds of Group 1A(1) ions $(Li^+, Na^+, K^+, etc.)$ and ammonium ion (NH_4^+) are soluble.
- 2. All common nitrates (NO₃⁻), acetates (CH₃COO⁻ or C₂H₃O₂⁻), and most perchlorates (ClO₄⁻) are soluble.
- All common chlorides (Cl⁻), bromides (Br⁻), and iodides (I⁻) are soluble, *except* those of Ag⁺, Pb²⁺, Cu⁺, and Hg₂²⁺. All common fluorides (F⁻) are soluble, *except* those of Pb²⁺ and Group 2A(2).
- 4. All common sulfates $(SO_4^{2^-})$ are soluble, *except* those of Ca^{2^+} , Sr^{2^+} , Ba^{2^+} , Ag^+ , and Pb^{2^+} .

Insoluble Ionic Compounds

- 1. All common metal hydroxides are insoluble, *except* those of Group 1A(1) and the larger members of Group 2A(2) (beginning with Ca^{2+}).
- 2. All common carbonates $(CO_3^{2^-})$ and phosphates $(PO_4^{3^-})$ are insoluble, *except* those of Group 1A(1) and NH₄⁺.
- 3. All common sulfides are insoluble *except* those of Group 1A(1), Group 2A(2), and NH_4^+ .

Equilibrium exists between solid solute and the aqueous ions

 $PbSO_4(s) \rightleftharpoons Pb^{2+}(aq) + SO_4^{2-}(aq)$

Set up "Reaction Quotient"

$$Q_{c} = \frac{[Pb^{2+}][SO_{4}^{2-}]}{[PbSO_{4}(s)]}$$

 $\mathbf{Q}_{\mathbf{c}} \left[\mathbf{PbSO}_{4}(\mathbf{s}) \right] = \left[\mathbf{Pb}^{2+} \right] \left[\mathbf{SO}_{4}^{2-} \right]$

Note: concentration of a solid - [PbSO₄(s)] = 1
 Define Solubility Product

 $Q_{sp} = Q_{c}[PbSO_{4}(s)] = [Pb^{2+}][SO_{4}^{2-}]$

When solid PbSO₄ reaches equilibrium with Pb²⁺ and SO₄ at saturation, the numerical value of Q_{sp} attains a constant value called the solubility-product constant (K_{sp})

4/28/2019

 Q_{sp} at saturation = K_{sp} = solubility - product constant

Equilibria - Slightly Soluble Ionic Compounds
 The Solubility Product Constant (K_{sp})

Value of K_{sp} depends only on temperature, not individual ion concentrations

Saturated solution of a slightly soluble ionic compound, M^pX^q, composed of ions Mⁿ⁺ and X^{z-}, the <u>equilibrium</u> condition is:

 $\mathbf{Q}_{sp} = [\mathbf{M}^{n+}]^{p} [\mathbf{X}^{z-}]^{q} = \mathbf{K}_{sp}$

Equilibria - Slightly Soluble Ionic Compounds Single-Step Process Cu(OH),(s) \Box $Cu^{2+}(aq) + 2OH^{-}(aq)$ $K_{sn} = [Cu^{2+}][OH^{-}]^{2}$ Multi-Step Process MnS(s) \Box $Mn^{2+}(aq) + S^{2-}(aq)$ $S^{2}(aq) + H_{2}O(l) \square HS^{2}(aq) + OH^{2}(aq)$

 $MnS(s) + H_2O(l) \square Mn^{2+}(aq) + HS^{-}(aq) + OH^{-}(aq)$

 $K_{sp} = [Mn^{2+}][HS^{-}][OH^{-}]$

Solubility-ProductConstants (K_{sp}) of SelectedIonic Compounds at 25°C

Name, Formula	K _{sp}	
Aluminum hydroxide, Al(OH) ₃	3×10^{-34}	
Cobalt(II) carbonate, CoCO ₃	1.0×10^{-10}	
Iron(II) hydroxide, Fe(OH) ₂	4.1×10^{-15}	
Lead(II) fluoride, PbF ₂	3.6×10^{-8}	
Lead(II) sulfate, PbSO ₄	1.6×10^{-8}	
Mercury(I) iodide, Hg ₂ I ₂	4.7×10^{-29}	
Silver sulfide, Ag ₂ S	8×10^{-48}	
Zinc iodate, $Zn(IO_3)_2$	3.9×10^{-6}	

Relationship Between K _{sp} and Solubility at 25°C				
No. of lons	Formula	Cation/Anion	K _{sp}	Solubility (M)
2	MgCO ₃	1/1	3.5×10^{-8}	1.9×10^{-4}
2	PbSO ₄	1/1	1.6×10^{-8}	1.3×10^{-4}
2	BaCrO ₄	1/1	2.1×10^{-10}	1.4×10^{-5}
3	$Ca(OH)_2$	1/2	6.5×10^{-6}	1.2×10^{-2}
3	BaF ₂	1/2	1.5×10^{-6}	7.2×10^{-3}
3	CaF_2	1/2	3.2×10^{-11}	2.0×10^{-4}
3	Ag_2CrO_4	2/1	2.6×10^{-12}	8.7×10^{-5}

The Effect of the Common Ion

The presence of a "Common Ion" <u>decreases</u> the solubility of a slightly soluble ionic compound

PbCrO₄(s) \square **Pb**²⁺(aq) + **CrO**₄²⁻(aq)

 $K_{sp} = [Pb^{2+}][CrO_4^{2-}] = 2.3 \times 10^{-13}$

- Add some Na₂CrO₄, a soluble salt, to the saturated PbCrO₄ solution
 - Concentration of CrO₄²⁻ increases
 - Some of excess CrO₄²⁻ combines with Pb²⁺ to form PbCrO₄(s)
 - Equilibrium shifts to the "Left"
 - This shift "reduces" the solubility of PbCrO₄

The Effect of pH on Solubility

- The Hydronium Ion (H₃O⁺) of a strong acid increases the solubility of a solution containing the anion of a weak acid (HA⁻)
- Adding some strong acid to a saturated solution of Calcium Carbonate (CaCO₃) introduces large amount of H₃O⁺ ion, which reacts immediately with the CaCO₃ to form the weak acid HCO₃⁻

 $CaCO_3(s) \square Ca^{2+}(aq) + CO_3^{2-}(aq)$

 $\operatorname{CO}_{3}^{2}(\operatorname{aq}) + \operatorname{H}_{3}O^{+} \Box = \operatorname{HCO}_{3}^{-}(\operatorname{aq}) + \operatorname{H}_{2}O(I)$

Additional H₃O⁺ reacts with the HCO₃⁻ to form carbonic acid, H₂CO₃, which immediately decomposes to H₂O and CO₂

 $HCO_3^-(aq) + H_3O^+ \square H_2CO_3(aq) + H_2O(l) \square CO_2(g) + 2H_2O(l)$

The equilibrium shifts to the "Right" and more CaCO₃ dissolves – increased solubility

The overall reaction is:

$$CaCO_{3}(s) \Box Ca^{2+} + CO_{3}^{2-} \xrightarrow{H_{3}O^{+}} HCO_{3}^{-} \xrightarrow{H_{3}O^{+}} HCO_{3}^{-} \xrightarrow{H_{3}O^{+}} H_{2}CO_{3} \rightarrow CO_{2}(g) + H_{2}O + Ca^{2+}$$

Adding H₃O⁺ to a saturated solution of a compound with a strong acid anion – AgCl

- Chloride ion, Cl⁻, is the conjugate base of a strong acid (HCl)
- It coexists with water, i.e. does not react with water
- > There is "No" effect on the equilibrium

Equilibria - Slightly Soluble Ionic Compounds Predicting Formation of a Precipitate $> Q_{sp} = K_{sp}$ when solution is "saturated" $> Q_{sp} > K_{sp}$ solution momentarily "supersaturated" • Additional solid precipitates until $Q_{sp} = K_{sp}$ again $> Q_{sp} < K_{sp}$ solution is "unsaturated" No precipitate forms at that temperature • More solid dissolves until $Q_{sp} = K_{sp}$

- Selective Precipitation of Ions
 - Separation of one ion in a solution from another
 - Exploit differences in the solubility of their compounds
 - The K_{sp} of the less soluble compound is <u>much smaller</u> than the K_{sp} of the <u>more</u> soluble compound
 - Add solution of precipitating ion until the Q_{sp} value of the more soluble compound is almost equal to its K_{sp} value
 - The less soluble compound continues to precipitate while the more soluble compound remains dissolved, i.e., the K_{sp} of the less soluble compound is always being exceeded, i.e. precipitation is occurring

At equilibrium, most of the ions of the less soluble compound have been removed as the precipitate

Equilibria Involving Complex Ions

The product of any Lewis acid-base reaction is called an "Adduct", a single species that contains a new covalent bond

 $A + :B \square A - B$ (Adduct)

- A complex ion consists of a central metal ion covalently bonded to two or more anions or molecules, called ligands
 - Ionic ligands- $OH^ CI^ CN^-$ Molecular ligands- H_2O CO NH_3

Ex $Cr(NH_3)_6^{3+}$

Cr³⁺ is the central metal ion

NH₃ molecules are molecular ligands

 Metal acts as Lewis Acid by accepting electron pair; ligands acts as Lewis base by donating electron pair
 All complex ions are Lewis adducts

Complex Ions

- Acidic Hydrated metal ions are complex ions with water molecules as ligands
- When the hydrated cation is treated with a solution of another ligand, the bound water molecules exchange for the other ligand

 $M(H_2O)_4^{2+}(aq) + 4NH_3(aq) \square M(NH_3)_4^{2+}(aq) + 4H_2O(l)$

At equilibrium

$$K_{c} = \frac{[M(NH_{3})_{4}^{2+}][H_{2}O]^{4}}{[M(H_{2}O)_{4}^{2+}][NH_{3}]^{4}}$$

Water is constant in aqueous reactions
 Incorporate in K_c to define K_f (formation constant)

$$\mathbf{K}_{f} = \frac{\mathbf{K}_{c}}{[\mathbf{H}_{2}\mathbf{O}]^{4}} = \frac{[\mathbf{M}(\mathbf{N}\mathbf{H}_{3})_{4}^{2+}]}{[\mathbf{M}(\mathbf{H}_{2}\mathbf{O})_{4}^{2+}][\mathbf{N}\mathbf{H}_{3}]^{4}}$$

Complex Ions (Con't)

The actual process is stepwise, with ammonia molecules replacing water molecules one at a time to give a series of intermediate species, each with its own formation constant (K_f)

 $M(H_2O)_4^{2+}(aq) + NH_3(aq) \square M(H_2O)_3(NH_3)^{2+}(aq) + H_2O(l)$

 $\mathbf{K}_{f1} = \frac{[\mathbf{M}(\mathbf{H}_{2}\mathbf{O})_{3}(\mathbf{N}\mathbf{H}_{3})^{2+}}{[\mathbf{M}(\mathbf{H}_{2}\mathbf{O})_{4}^{2+}][\mathbf{N}\mathbf{H}_{3}]}$

> The sum of the 4 equations gives the overall equation

- The product of the individual formation constants gives the overall formation constant
- The K_f for each step is much larger than "1" because "ammonia" is a stronger Lewis base than H₂O

 $\mathbf{K}_{\mathbf{f}} = \mathbf{K}_{\mathbf{f}1} \mathbf{X} \mathbf{K}_{\mathbf{f}2} \mathbf{X} \mathbf{K}_{\mathbf{f}3} \mathbf{X} \mathbf{K}_{\mathbf{f}4}$

Adding excess NH₃ replaces all H₂O and all M²⁺ exists as M(NH₃)₄²⁺

Complex Ions – Solubility of Precipitates Increasing [H₃O⁺] increases solubility of slightly soluble ionic compounds if the anion of the compound is that of

- ionic compounds if the anion of the compound is that of a weak acid
- A Ligand increases the solubility of a slightly soluble ionic compound if it forms a complex ion with the cation

 $ZnS(s) + H_2O(l) \square Zn^{2+}(aq) + HS^{-}(aq) + OH^{-}(aq)$

 $K_{sp} = 2.0 \times 10^{-22}$

When 1.0 M NaCN is added to the above solution, the CN⁻ ions act as ligands and react with the small amount of Zn²⁺(aq) to form a complex ion

 $Zn^{2+}(aq) + 4CN^{-}(aq) \square Zn(CN)_{4}^{2-}(aq)$

 $K_{\rm f} = 4.2 \times 10^{19}$

■ Add the two reactions and compute the overall K $ZnS(s) + H_2O(l)$ $Zn^{2+}(aq) + HS^{-}(aq) + OH^{-}(aq)$ $Zn^{2+}(aq) + 4CN^{-}(aq)$ $Zn(CN)_4^{2-}(aq)$

 $\overline{\text{ZnS}(s) + 4\text{CN}^{-}(aq) + H_2O(l)} \square \overline{\text{Zn}(\text{CN})_4^{2} + \text{HS}^{-}(aq) + OH^{-}(aq)}$

 $K_{overall} = K_{sp} \times K_{f} = (2.0 \times 10^{-22}) (4.2 \times 10^{19}) = 8.4 \times 10^{-3}$

The overall equilibrium constant, K_{overall}, is more than a factor of 10¹⁹ larger than the original K_{sp} (2.0 x 10⁻²²)
 This reflects the increased amount of ZnS in solution as Zn(CN₄²⁻)

- Equilibria Involving Complex Ions
 - > Amphoteric Oxides & Hydroxides (Recall Chapter 8)
 - Some metals and many metalloids form oxides or hydroxides that are amphoteric; they can act as acids or bases in water
 - These compounds generally have very little solubility in water, but they do dissolve more readily in acids or bases
 - Ex. Aluminum Hydroxide

 $AI(OH)_3(s) \hookrightarrow AI^{3+}(aq) + 3OH^{-}(ag)$

 $K_{sp} = 3 \times 10^{-34}$ (very insoluble in water)

◆ In acid solution, the OH⁻ reacts with H₃O⁺ to form water 3H₃O⁺(ag) + 3OH₂(aq) → $6H_2O(I)$

 $AI(OH)_3(s) + H_3O^+(aq) \rightarrow AI^{3+}(aq) + 6H_2O(I)$

- Equilibria Involving Complex Ions
 - Aluminum Hydroxide in basic solution

 $Al(OH)_3(s) + OH^-(aq) \rightarrow Al(OH)_4^-(aq)$

- The above reaction is actually a much more complex situation, involving multiple species
- When dissolving an aluminum salt, such as Al(NO₃), in a strong base (NaOH), a precipitate forms initially and then dissolves as more base is added
- The formula for hydrated AI^{3+} is $AI(H_2O)_6^{3+}$
- Al(H₂O)₆³⁺ acts as a "weak polyprotic acid and reacts with added OH⁻ in a <u>stepwise removal</u> of the H₂O ligands attached to the hydrated Al

Ionic Equilibria in Aqueous Solutions Amphoteric Aluminum Hydroxide in basic solution $AI(H_2O)_6^{3+}(aq) + OH^{-}(aq) \implies AI(H_2O)_5OH^{2+}(aq) + H_2O(I)$ $AI(H_2O)_5^{2+}(aq) + OH^{-}(aq) \implies AI(H_2O)_4(OH)_2^{+}(aq) + H_2O(I)$ $AI(H_2O)_4^+(aq) + OH^-(aq) \Leftrightarrow AI(H_2O)_3(OH)_3(s) + H_2O(I)$

• $Al(H_2O)_3(OH)_3(s)$ is more simply written $Al(OH)_3(s)$

As more base is added, a 4th H⁺ is removed from a H₂O ligand and the soluble ion Al(H₂O)₂(OH)₄⁻(aq) forms

 $AI(H_2O)_3(OH)_3(s) + OH^-(aq) \Leftrightarrow AI(H_2O)_2(OH)_4^-(aq)$

The ion is normally written as $Al(OH)_4$ (aq)