
PRINCIPAL STRESSES 
ACTING ON MATERIALS

In 2D and 3D



The inclined plane has an area of A/cosq; the stress normal to the plane and shear stress along the
plane (in the direction of maximum inclination)are;

SIMPLE AXIAL STRESS – 2D

N = F cosq

T = F sinq

snq = F/A
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The maximum normal stress (s) is F/A which acts on radial planes. The magnitude and direction of
maximum shear stress is extracted from the differentiation;

The maximum value of shear stress is obtained by putting dq/dq=0;

Note: Maximum shear stress (qmax) acts on a plane with q=45˚ and
maximum normal stress (snqmax) acts on a plane with q=0 ˚.
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Problem

A cylindrical rock sample is subjected to an axial compressive force of 5kN. The diameter of the 
sample is 50 mm. Please determine;
a. Normal stress and shear stress on an inclined plane of 30˚. 
b. Maximum shear stress
c. Inclination of planes on which the shear stress is half of maximum shear stress.

Solution

a. Unit area; A=πr2=1.96x10-3 m2

Normal stress; snq = (5 kN/1.96x10-3)cos230 = 1913 kPa
Shear stress; q= (5 kN/2x1.96x10-3)sin60 = 1105 kPa

b. Maximum Shear stress; 
qmax= (F/2A) =(5 kN/2x1.96x10-3) = 1275 kPa

c. Maximum Shear stress; 
1/2qmax= qmax sin2q; q=15˚ or 75˚



SIMPLE BIAXIAL STRESS – 2D

Consider a rectangular plate (a) of unit thickness with normal principal stresses s1 and s2. The shear
stresses along the edges are assumed to be zero. A square element of the plate is shown in 2D (b). The
normal and shear stresses acting on a plane inclined at an angle direction of the plane on which s1 acts
are found by considering forces acting on the triangular element (c).

Unit length along CD = l, normal stress for a plate of unit thickness

Fl=s1l
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Forces in normal stress direction

Forces in shear stress direction;
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Maximum shear stress on 45˚ plane;



Problem

Solution
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Maximum shear stress is on 45˚ plane;
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Shear stress is on 60˚ plane;
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Which is the equation of a circle with radius “r” and with a center on “-s” plot

MOHR STRESS CIRCLE

The graphical stress relations was discovered by Culmann (1866) and developed by Mohr (1882) 
based on the equations given below





Biaxial Compression-2D
Biaxial stresses are represented by a circle which plots in “+s” space, passing through s1 and s2 on
“=0” axis. Centre of circle is on “=0” axis at point “1/2(s1+s2)”.Radius of circle has the magnitude
of “1/2(s1-s2)” which represents “max”

Biaxial Tension-2D
The stress circle extends into both positive and negative “s” space. Center of circle is on “=0” 
axis at point “1/2(s1+s2)”.Radius is “1/2(s1-s2)=max” which occurs at 45˚ to s1 direction. 
Normal stress is zero in directions “±q” to the direction of s1;
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Biaxial Shear-2D

The stress circle has a radius of “zy” which is opposite to “yz”. Center of the circle is at “s=0; =0”. 
Principal normal stresses “s1 and s2” are equal but opposite in sign which have magnitudes equal to 
“zy”. The directions of principal normal stresses are at 45˚ in directions of “zy” and “yz”





General Considerations on Principal Stress Relations



Problem

A plane element is subjected to the stresses given below. Determine the principal stresses and 
directions by Mohr’s circle. 

The principal stresses are represented by points G and H. Since the coordinate of “C” is 40; 
CD= (402+302)0.5 = 50
Minimum principal stress is
smin=OG=OG-CG=40-50=-10 Mpa

Maximum principal stress is
smax=OH=OC+CH=40+50=90 Mpa

The angle 2qp;
tan 2qp =30/40; qp =18.43



STRESS in 3D

In the body of a stressed material, 3D stresses at any point can be represented as if acting on a small
cubical element. The nine stresses in three Cartesian space are in form of a matrix “STRESS TENSOR”
















