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dark-adapted rhodopsin (Palczewski et al., 2000), which allowed
an accurate determination of amino acid side chain conforma-
tions, as well as the extracellular and intracellular loops and
the N- and C-terminal domains.
Collectively, the information gained from these models pro-

vided structural explanations for the role of specific sequence
features that are highly conserved among the large class A
subgroup of GPCRs that include rhodopsin, the monoamine
receptors, and numerous peptide and lipid receptors. (This
review will focus on class A receptors for which the principal
structural advances have been realized.) It was previously shown
for these receptors that a sequence element, termed the DRY (or
E/DRY) motif, played a role in controlling receptor activity. The
structural models revealed the presence of a polar interaction
between an arginine located at the bottom of TMIII and a gluta-
mate on TMVI, providing a structural explanation for the role
of this conserved features. The so-called ‘‘ionic lock’’ formed
between TMIII and TMVI was proposed to stabilize the inactive
state of the receptor (Figures 1 and 2). Consistent with this
notion, biophysical studies on rhodopsin (Altenbach et al.,
2008) and the b2-adrenergic receptor (b2AR) (Yao et al., 2006)

showed that disruption of the interaction leads to TMVI move-
ment away from the TM bundle, creating a crevice to cradle
the heterotrimeric G protein. The similar findings for rhodopsin

Figure 1. G-Protein-Coupled Receptor Topological Organization
and Signaling Paradigm
Serpentine illustration of the seven transmembrane topological organization of
GPCRs. The positions of some of the conserved structural features of the class
A GPCRs such as the DRY and NPXXYmotifs, as well as the toggle switch, are
indicated. The dotted line indicates the two domains (in red) involved in the
ionic interactions known as the ionic lock. The figure also illustrates the
canonical G-protein-dependent and more recently described G-protein-
independent signaling modes involving b-arrestin and other signaling effec-
tors. ICL, intracellular loop; ECL, extracellular loop.

Table 1. GPCR Structures

Receptor Ligand

PDB Accession

Number

Inverse Agonists

Adenosine A2A caffeine 3RFM

XAC 3REY

ZM241385 3EML-3PWH-

3VG9-3VGA

b2-adrenergic carazolol 3KJ6-2RH1-

2R4R-2R4S

compound aa 3NY9

ICI-118551 3NY8

timolol 3D4S

Histamine H1 doxepin 3RZE

M2 muscarinic acetylcholine QNB 3UON

M3 muscarinic acetylcholine tiotropium 4DAJ

Antagonists

Adenosine A2A compound bb 3UZA

compound cc 3UZC

b1-adrenergic carazolol 2YCW

cyanopindolol 2VT4-2YCX-2YCY

iodocyanopindolol 2YCZ

b2-adrenergic alprenolol 3NYA

CXC chemokine type 4 CVX15 3OE0

IT1t 3ODU-3OE6-

3OE8-3OE9

Dopamine D3 eticlopride 3PBL

d opioid naltrindol 4EJ4

k opioid JDTic 4DJH

m opioid b-funaltrexamine 4DKL

Nociceptin/orphanin FQ C-24 4EA3

Sphingosine-1-phosphate

type 1

ML056 3V2W

3V2Y

Agonists

b1-adrenergic carmoterol 2Y02

dobutamine 2Y00-2Y01

isoproterenol 2Y03

salbutamol 2Y04

b2-adrenergic BI-167107 3P0G-3SN6

procaterol 3PDS

Adenosine A2A adenosine 2YDO

NECA 2YDV

UK-432097 3QAK

Structures are grouped on the basis of the efficacy of the ligands that

were cocrystalized: inverse agonists, antagonists, and agonists.
aEthyl 4-[(2S)-2-hydroxy-3-[(propan-2-yl)amino]propoxy]-3-methyl !1-

benzofuran !2-carboxylate.
b6-(2,6-dimethylpyridin-4-yl)-5-phenyl-1,2,4-triazin-3-amine.
c4-(3-amino-5-phenyl-1,2,4-triazin-6-yl)-2-chlorophenol.
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and the b2AR popularized the notion that ligand binding would
lead to full receptor activation through a common conserved
mechanism. Yet, the lack of a 3D structure for an activated
receptor prevented a complete understanding of the molecular
processes linking ligand binding to receptor activation.

Methodological Breakthroughs
Seven years following the crystallization of mammalian rhodop-
sin, the structure of human b2AR in complex with the b-adren-
ergic antagonist carazolol was solved (Cherezov et al., 2007;
Rasmussen et al., 2007; Rosenbaum et al., 2007). Attaining
this goal requiredmajor methodological hurdles to be overcome.
First, large quantities of homogeneous receptor were needed—
a task that was complicated by the lower expression of GPCRs
binding diffusible ligands compared to rhodopsin. This problem
was circumvented by overexpressing the receptors in special-
ized systems while the sources of microheterogeneity such as
putative phosphorylation and glycosylation sites were elimi-
nated by mutagenesis. Second, the stability of these intrinsically
dynamic GPCRs needed to be increased to avoid aggregation
and to facilitate crystal lattice packing. Because the third intra-
cellular loop (ICL3) (Figure 1) is a particularly flexible domain,
different strategies were designed to stabilize this part of the
receptor. In a few cases (Rasmussen et al., 2007; Bokoch
et al., 2010), an antibody Fab fragment recognizing ICL3 was
bound to the receptor. In many other cases, ICL3 was deleted
and replaced by well-folded soluble proteins such as T4 lyso-
zyme (Chien et al., 2010; Jaakola et al., 2008; Rosenbaum
et al., 2007; Wu et al., 2010, 2012) or the apocytochrome
b564RIL (Thompson et al., 2012). Thermo-stabilizing mutations
have also been used to obtain receptor preparations compatible
with crystal formation (Warne et al., 2008; Doré et al., 2011;
Lebon et al., 2011). The residues selected to stabilize the re-
ceptors were first identified empirically by testing a very large
number of mutations and selecting those with the greatest
impact on stability. In most cases, between four and eight muta-
tions were needed to obtain the required stability.
As for many membrane proteins, GPCR crystallization re-

quires conditions adapted to the hydrophobic nature of the
protein. In an effort to satisfy this requirement, several methods,
including detergent-based micelles, bicelles (Faham and Bowie,
2002), and in particular, lipidic cubic phase systems (Landau
and Rosenbusch, 1996; Pebay-Peyroula et al., 1997), were
developed and used successfully. Despite optimized conditions,
GPCR crystals tend to be small. The development of microfocus
X-ray synchrotron technologies that deliver a microscale beam
to a crystal (Riekel et al., 2005) greatly contributed to generating
the high-resolution structures.

An Explosion of Structures
The wealth of structural information emerging over the last 5
years (Table 1) forms the basis of a real revolution in GPCR
research. The structural and functional models that arise from
them have changed our views on GPCR agonist and antagonist
binding modes and on the activation processes.
Ligand Recognition
As expected, the overall folding of the TM domain is highly
conserved among all structures and was well predicted by the

Figure 2. Configurations of the ‘‘E/DRY,’’ ‘‘Ionic Lock,’’ and ‘‘NPXXY’’
Motifs in Rhodopsin, Opsin, and Antagonist-Bound b2AR
Bottom views of rhodopsin (PDB ID:1GZM), opsin (PDB ID:3DQB), and b2-
adrenergic receptor (b2AR) (PDB ID:2RH1). TM domains are shown as ribbons,
whereas the important residues of the E/DRY, ionic lock, and NPXXYmotifs are
shown as stick renderings and are indicated by solid lines. The structure of
rhodopsin represents the inactive conformation of the receptor, whereas the
opsin structure is in an active-like conformation. The dotted circles overlaid on
the opsin structure indicate the positions of TMV, TMVI, and TMVII in the inactive
rhodopsin, and the orange dotted arrows illustrate the TM movements from
inactive toactivestates.The ionic interaction (ionic lock), representedbyadotted
line between the R of the E/DRY motif and a negatively charged glutamate (E)
residue in TMVI, is believed to stabilize the receptor in an inactive state. In the
opsin structure, anactive-like retinal-free state of rhodopsin, the disruptionof the
ionic lock allows TMVI tomove away from the receptor bundle anddown toward
the cytoplasmic interface with the heterotrimeric G protein. Simultaneously, the
tyrosine (Y) residue of the NPXXYmotif moves inside the bundle, blocking TMVI
in an open conformation. The ionic lock is, however, not found in most of the
antagonist-boundGPCRstructures obtained to date. This is exemplifiedhere by
the structure of the b2AR bound to the antagonist (inverse agonist) carazolol,
where the ionic lock is not formed, indicating that an alternative configuration is
involved in the stabilization of the closed state of the receptor.
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structures of eukaryotic rhodopsin, showing only modest differ-
ences in the relative orientation of the TMs. However, more
striking differences are found in the extracellular loop domains
and especially in the second extracellular loop (ECL2) that clearly
displays receptor-specific folds (Figure 3). These domains act
as a vestibule directing the way ligands access the receptor-
binding pocket. For example, the ECL2 of many receptors,
including the b2AR (Figure 3, top left), form a compact helical
shape adjacent to the TM bundle that, along with the small
ECL1 and ECL3, allows soluble ligands to diffuse easily from
the extracellular compartment toward the binding site inside of
the receptor bundle (Rosenbaum et al., 2007). In contrast, as
was observed for rhodopsin (albeit through a different fold), the
ECL2 of the S1P1 receptor, along with ECL1 and the N-terminal
helices, seals off the ligand-binding pocket (Figure 3, top right),
blocking access from the extracellular milieu (Hanson et al.,
2012). The structure suggests that the lipid agonist S1P ac-
cesses the receptor by a TMI-TMVII intrabundle opening near
the plasma membrane. Interestingly, the extent of opening of
each receptor’s ‘‘mouth’’ determined by the relative position of
ECL2 varies considerably between receptors, revealing an unex-

pected diversity of ligand entry mechanisms. In addition to their
role in channeling the ligands toward the binding pocket, these
extracellular domains have been suggested to contribute to
both binding kinetics and selectivity (Dror et al., 2011).
As the structures have revealed diversity in how ligands

access the receptor, so too have they illuminated specific
aspects of ligand recognition. Classical views of how ligands
might bind were sculpted by generalization from the retinal/
rhodopsin structure (Palczewski et al., 2000) and early aminergic
receptor modeling (Flower, 1999), in which ligands were pre-
dicted to lie parallel to the plane of the membrane deep in the
TM bundle (Figure 3, top left). The new structures broaden our
understanding on this front. For instance, both agonists and
antagonists (Figure 3, bottom left) of A2A adenosine receptor
(A2AAR) bind in an extended conformation perpendicular to the
plane of the membrane where they are stabilized by extensive
contacts with ECL2 and ECL3 (Doré et al., 2011; Jaakola et al.,
2008; Xu et al., 2011). For CXCR4 (Figure 3, bottom right), the
antagonist IT1t unexpectedly binds the receptor at its surface
between TMVII, TMI, TMII, and ECL2 (Wu et al., 2010). In
contrast, b2AR shows the ‘‘canonical’’ deep TMVI-TMIII-TMV

Figure 3. Distinct Binding Modes for GPCR Ligands
Top and side views of the human b2AR (PDB ID:2RH1), S1P1R (PDB ID:3V2Y), human A2AAR (PDB ID:3EML), and human CXCR4 (PDB ID:3ODU) shown as
ribbons with their respective cocrystallized ligand shown in gray spheres. The black solid lines indicate the position of the ECL and N terminus. The four receptors
display different relative ligand orientations in the binding pocket and changes in the extracellular domain fold, revealing a great diversity in ligand binding.
Interestingly, b2AR, A2AAR, and CXCR4 have freely accessible binding pockets that are the consequence of a compact extracellular domain that does not
obstruct the entry of ligands from the extracellular side. In contrast, the N terminus and ECL2 of S1P1 extend on the top of the receptor, covering the opening of the
receptor, thereby precluding any ligand exchange with the extracellular compartment. Therefore, an alternative path for ligand entry has been proposed between
TMI and TMVII.
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aminergic binding pocket (Figure 3, top left), as do the musca-
rinic M2 and M3 receptors (M2R and M3R), although ligands
for these latter receptors are protected by a three-dimensional
aromatic cage (Haga et al., 2012; Kruse et al., 2012). Similarly,
the S1P1R antagonist ML056 (Figure 3, top right) binds a highly
hydrophobic and polyaromatic region deep in the receptor,
but the ligand also projects phosphate and amine groups verti-
cally toward charged and polar residues packed between the
N-termini, ECL2, TMVII, TMII, and TMIII (Hanson et al., 2012). It
should also be noted that the size of the binding sites greatly
diverges among receptors, ranging from the small compact
binding pocket of the eticlopride-bound dopamine receptor
(Chien et al., 2010) to the large surface of the CXCR4-binding
pocket required to accommodate the fold of the bound CVX15
peptide (Wu et al., 2010). These results clearly indicate that
each receptor has a binding site that is specifically adapted to
the nature of its ligands. These data open new perspective in
the rational design of ligands that are better adapted to unique
binding pockets.

The rich diversity of the ligand-receptor complexes indicates
that ligand selectivity cannot be simply explained by different
amino acids within shared ligand binding pockets, but that it
also depends on the overall receptor architecture involving resi-
dues in different domains of the receptor. A good example is
provided by the b1AR and b2AR structures that revealed a very
high degree of identity between the residues found in the
‘‘canonical’’ aminergic binding pocket (Warne et al., 2008) de-
spite the existence of clear receptor subtype selectivity. Such
selectivity has been proposed to result in part from ligand-
induced conformational changes (Wacker et al., 2010) and to
involve interactions with ECL residues (Audet and Bouvier,
2008; Rosenbaum et al., 2007; Warne et al., 2008). A role for
residues close to the extracellular domains in determining the
ligand binding selectivity was also observed for the recently
solved structure of the delta-opioid receptor (Granier et al.,
2012). The crystal structure of the nociceptive/orphanin FQ
receptor (NOP) also shows that most of the residues that are
different between NOP and the other members of the opioid
receptor family are not in direct contact with the ligand in the
binding pocket but rather are involved in large pocket reshaping
and water coordination.

The diversity in binding modes also has important implications
for the activation process of the receptors, as it suggests that no
unique activation trigger can be invoked for all GPCRs. Instead,
the engagement of distinct regions of the receptors by their
ligands predicts that different allosteric transitions will be needed
to reach a common active state.
Activation and Allosteric Transition
GPCR ligands can be divided into two general classes: agonists
that promote and antagonists that block receptor activation.
Antagonists can be subdivided into inverse agonists, which
inhibit the spontaneous (agonist-independent) activity of the
receptors, and neutral antagonists that are devoid of intrinsic
activity and block the action of both agonists and inverse
agonists. Out of the 47 ligand-bound GPCR structures, 36
were cocrystallized with antagonists (including 16 with inverse
agonists), whereas 11 were cocrystalized with agonists (Table
1). Somewhat surprisingly, few differences could be seen

between the agonist and antagonist-bound forms, yielding
relatively little information on the dynamics of receptor activation
and on the conformational changes underlying ligand-promoted
activation. Exemplifying this point is the observation that struc-
tures of the G-protein-free b2AR cocrystalized with full or partial
agonists are very similar to those with antagonist or inverse
agonist and mostly display the characteristics of an inactive
conformation (Figure 4). These limited changes are consistent
with a model for full GPCR activation that requires both ligand
binding and G protein engagement.
Fortunately, three structures provided significant insights in

the activation mechanism. The first one is a ligand-free form of
opsin that is cocrystalized with the C terminus of the a-subunit
of the heterotrimeric visual G protein, transducin (Scheerer
et al., 2008). This structure confirmed earlier predictions about
TMVI movement from site-directed mutagenesis and biophys-
ical studies. When compared with dark-adapted rhodopsin, a
large outward movement of TMVI and disruption of the ionic
lock between TMIII and TMVI were observed (Figure 2). In addi-
tion, this structure provided new insight into conformational rear-
rangements that facilitate G protein binding. In the active opsin,
TMVII bends inward, allowing the repositioning of the tyrosine
from the conserved NPXXY motif, which prevents the reverse
movement of TMVI, thus stabilizing the open state that forms
a cradle for transducin (Figure 2). In parallel, the arginine of the
DRYmotif juts into the bundle of the receptor, providing an inter-
acting floor for transducin’s C terminus. TMV is also repacked
against TMVI, offering an additional interacting surface for the
G protein.
The two additional structures that provided insights into the

activation process are the agonist-bound b2AR stabilized in the
active conformation by a nanobody mimicking the G protein
(Rasmussen et al., 2011a) and the agonist-bound b2AR cocrys-
tallizedwith heterotrimeric stimulatory G protein (Gasb1g2) (Ras-
mussen et al., 2011b). The C terminus of Gas lies deep in a
pocket created by the outward movement of TMVI, and most
of the Ga interaction sites are found on TMIII, TMV, TMVI, and
ICL2 of the receptor. As shown in Figure 4B, comparison of the
agonist-bound G-protein-coupled b2AR structure with that of
the G-protein-free receptor bound to the inverse agonist carazo-
lol showed significant conformational rearrangements that are
similar to those observed for the active opsin. The noticeable
differences were a larger outward movement and bending of
TMVI and the formation of a bulge in TMV that positions a serine
residue (S207) closer to the agonist, providing a structural expla-
nation for the well-known increase in agonist affinity promoted
by G protein coupling. Together, these changes represent key
determinants of the allosteric transition toward a receptor state
activating the G protein.
Nucleotide Exchange
The three structures that incorporate fragments of G proteins
or G-protein-mimetics also provide insight into how GPCRs
facilitate nucleotide exchange and, hence, initiate signaling
cascades. The receptor-coupled structures of the G proteins
show that the helical domain of Ga undergoes a major rigid-
body rotation of almost 130! upon receptor engagement (Fig-
ure 4B) that was previously predicted by modeling (Cherfils
and Chabre, 2003) and biophysical studies (Galés et al., 2006).
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Figure 4. Fully Activated Conformations Require the Presence of Both Agonist and G Protein
(A) Schematic illustration of ligand binding and G protein engagement leading to a fully activated conformation of a receptor.
(B) Side and bottom views of the b2AR. Top left, bound to the antagonist (inverse agonist) carazolol (PDB ID: 2RH1); bottom left, covalently bound to the agonist
procaterol (PDB ID: 3PDS); and top right, bound to the agonist BI-167107 in the presence of Gasb1g2 (PDB ID: 3SN6). Black dotted lines and circles illustrate the
position of TMVI and TMVII in the inverse agonist-bound (inactive state) structure, whereas yellow dotted lines illustrate their position in the Gs and agonist-bound
structure (active state). The TM movements from the inactive to active states are indicated by yellow and orange arrows. It should be noted that the large
movements of the receptor leading to its open and active conformation were observed only in the presence of both agonist and G protein (top right). The structure
obtained in the presence of the agonist alone (bottom left) was similar to the inactive structure obtained in the presence of inverse agonist (top left). To illustrate the
conformational rearrangement of the G protein during the activation process, the helical domain structure of the nucleotide (GTPƴS)-bound heterotrimeric Gs
(PDB ID: 1AZS) was overlaid on the structure of the receptor-bound Gas (bottom right). The blue dotted arrow indicates the large rigid-body movement of the
helical domain of Gas that suggests a possible structural basis for the nucleotide exchange promoted by receptor activation.
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observation that T279, which stabilizes the closed position of
TMVI in the inactive receptor state by interacting with R165 of
the DRY motif, is packed within the TMV-TMVI interface
offers a possible mechanism for interprotomer regulation of
receptor activity (Figure 5). However, the TM5-TM6 interface is
not present in the k-opioid receptor (kOR) dimer structure.
Indeed, only one interface (1100 Å2 of buried surface), involving
the TMI, TMII, and helix 8, is visible in this structure (Wu et al.,
2012). The absence of the TMV-TMVI interface in the kOR struc-
ture is somewhat surprising given the high level of sequence
identity with the mOR in these TMs and may be due to the steric
hindrance from the two T4 lysozyme inserts included to aid crys-
tallization of kOR. Whether the dimerization interfaces revealed
by the recently solved structures correspond to the functionally

relevant dimers will require additional studies involving site-
directed mutagenesis and biochemical and biophysical ap-
proaches, but the structures provide rational starting points for
this work.

Conclusion
The recent flurry of high-resolution GPCR structures represents
a true renaissance for GPCR research. Although much remains
to be done to fully understand the precise molecular mecha-
nisms controlling receptor activities, the achievements of the
last 5 years provide the foundation of what promises to be
very exciting times for structure-based molecular pharmacology
and drug discovery. An emerging theme stems from the
observation that GPCRs function as molecular hubs that can
engage several distinct G proteins, as well as G-protein-inde-
pendent signaling pathways, and that different ligands pro-
mote the engagement of distinct subsets of effectors (Galandrin
et al., 2007). At the molecular level, such ligand-biased signaling
is believed to result from the stabilization of different active
conformations of the receptors (Bokoch et al., 2010). A future
challenge for structural biology will therefore be to provide
high-resolution images of these different receptor states with
the goal of designing ligands—and ultimately drugs—to selec-
tively control specific functions. As discussed above, the struc-
tures obtained when cocrystalizing receptors with ligands
displaying distinct efficacy profiles revealed very similar struc-
tures, indicating that solving the structures of receptor-ligand
complexes may not be sufficient to fully explore the confor-
mational plasticity of GPCRs underlying their rich biology. The
observation that cocrystallization with a G protein or a mimic
was needed to reveal a fully active conformation suggests
that solving structures of GPCRs in complex with specific effec-
tors such as different G proteins, b-arrestins, or GPCR kinases
will be needed to unravel the true diversity of receptor confor-
mations.
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