
SAMPLE PROCET AND PRACTICES OF FLUID MECHANICS 

 

Project: What is Bernoulli Equation? Please Give Examples of Use of the Bernoulli Equation. 

Solution:  

The Bernoulli equation states that the sum of the flow, kinetic, and potential 

energies of a fluid particle along a streamline is constant. Therefore, the kinetic 

and potential energies of the fluid can be converted to flow energy (and vice versa) 

during flow, causing the pressure to change. This phenomenon can be made more 

visible by multiplying the Bernoulli equation by the density ρ, 

 

𝑃 +
1

2
𝜌𝑉2 + 𝜌𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑙𝑜𝑛𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒 

 

Each term in this equation has pressure units, and thus each term represents some 

kind of pressure: 

 

• P is the static pressure (it does not incorporate any dynamic effects); it 

represents the actual thermodynamic pressure of the fluid. This is the same as the 

pressure used in thermodynamics and property tables. 

 

•
1

2
𝜌𝑉2 is the dynamic pressure; it represents the pressure rise when the fluid in 

motion is brought to a stop isentropically. 

 

• 𝜌𝑔𝑧 is the hydrostatic pressure, which is not pressure in a real sense since its 

value depends on the reference level selected; it accounts for the elevation effects, 

i.e., of fluid weight on pressure. 

 

The sum of the static, dynamic, and hydrostatic pressures is called the total 

pressure. Therefore, the Bernoulli equation states that the total pressure along a 

streamline is constant 

 

The sum of the static and dynamic pressures is called the stagnation pressure, 

and it is expressed as 

𝑃2 = 𝑃𝑠𝑡𝑎𝑔 = 𝑃1 +
𝜌𝑉1

2

2
 

 

The pressure at the stagnation point is greater than the static pressure, P1,  by an 

amount 
𝜌𝑉1

2

2
, the dynamic pressure. It can be shown that there is a stagnation point 

on any stationary body that is placed into a flowing fluid (Fig.1). Some of the fluid 

flows “over” and some “under” the object. The dividing line (or surface for two-

dimensional flows) is termed the stagnation streamline and terminates at the 



stagnation point on the body. For symmetrical objects (such as a baseball) the 

stagnation point is clearly at the tip or front of the object. 

 

 
Figure 1. Measurement of static and stagnation pressures. 

 

If elevation effects are neglected, the stagnation pressure, is the largest pressure 

obtainable along a given streamline. It represents the conversion of all of the 

kinetic energy into a pressure rise. The stagnation pressure represents the pressure 

at a point where the fluid is brought to a complete stop isentropically. The static, 

dynamic, and stagnation pressures are shown in the below Fig.2. When static and 

stagnation pressures are measured at a specified location, the fluid velocity at that 

location can be calculated from 

 

𝑉1 = 𝑉 = √
2(𝑃2 − 𝑃1)

𝜌
 

 

This equation is useful in the measurement of flow velocity when a combination 

of a static pressure tap and a Pitot tube is used, as illustrated in Fig.2. 

 



 
Figure 2. The static, dynamic, and stagnation pressures 

 

A static pressure tap is simply a small hole drilled into a wall such that the plane 

of the hole is parallel to the flow direction. It measures the static pressure. A Pitot 

tube is a small tube with its open end aligned into the flow so as to sense the full 

impact pressure of the flowing fluid. It measures the stagnation pressure. In 

situations in which the static and stagnation pressure of a flowing liquid are 

greater than atmospheric pressure, a vertical transparent tube called a piezometer 

tube (or simply a piezometer) can be attached to the pressure tap and to the Pitot 

tube.The liquid rises in the piezometer tube to a column height (head) that is 

proportional to the pressure being measured. If the pressures to be measured are 

below atmospheric, or if measuring pressures in gases, piezometer tubes do not 

work. However, the static pressure tap and Pitot tube can still be used, but they 

must be connected to some other kind of pressure measurement device such as a 

U-tube manometer or a pressure transducer. Sometimes it is convenient to 

integrate static pressure holes on a Pitot probe. The result is a Pitot-static probe, 

as shown in the below Fig.3. A Pitot-static probe connected to a pressure 

transducer or a manometer measures the dynamic pressure (and thus fluid 

velocity) directly. 



  
 

Figure 3. Close-up of a Pitot-static probe, showing the stagnation pressure 

hole and two of the five static circumferential pressure holes 
 

As shown in Fig.4.7. two concentric tubes are attached to two pressure gages (or 

a differential gage) so that the values of P3 and P4 (or the difference P3-P4) can be 

determined. The center tube measures the stagnation pressure at its open tip. If 

elevation changes are negligible, 

 

𝑃3 = 𝑃 +
1

2
𝜌𝑉2 

 

Where p and V are the pressure and velocity of the fluid upstream of point (2). 

The outer tube is made with several small holes at an appropriate distance from 

the tip so that they measure the static pressure. If the effect of the elevation 

difference between (1) and (4) is negligible, then P=P4=P1  

 

By combining these two equations we see that 

𝑃3 − 𝑃4 =
1

2
𝜌𝑉2 which can be rearranged to give 𝑉 = √

2(𝑃3−𝑃4)

𝜌
 

 

Example: A piezometer and a Pitot tube are tapped into a horizontal water pipe, 

as shown in Fig. to measure static and stagnation (static + dynamic) pressures. For 

the indicated water column heights, determine the velocity at the center of the 

pipe. The flow is steady and incompressible.  



 
 

Solution:  We take points 1 and 2 along the centerline of the pipe, with point 1 

directly under the piezometer and point 2 at the tip of the Pitot tube. This is a 

steady flow with straight and parallel streamlines, and the gage pressures at points 

1 and 2 can be expressed as 

 

P1=ρg(h1+h2)    P2=ρg(h1+h2+h3) 

 

Noting that point 2 is a stagnation point and thus V2 = 0 and z1 = z2, the application 

of the Bernoulli equation between points 1 and 2 gives 

 

𝑃1

𝜌𝑔
+

𝑉1
2

2𝑔
+ 𝑧1 =

𝑃2

𝜌𝑔
+

𝑉2
2

2𝑔
+ 𝑧2 →

𝑉1
2

2𝑔
=

𝑃2 − 𝑃1

𝜌𝑔
 

 

Substituting the P1 and P2 expressions gives 

 

𝑉1
2

2𝑔
=

𝑃2 − 𝑃1

𝜌𝑔
=

𝜌𝑔(ℎ1 + ℎ2 + ℎ3) − 𝜌𝑔(ℎ1 + ℎ2)

𝜌𝑔
= ℎ3 

 

Solving for V1 and substituting, 

𝑉1 = √2 × 9.81 × 0.12 = 1.53 𝑚/𝑠 

 

Note that to determine the flow velocity, all we need is to measure the height of 

the excess fluid column in the Pitot tube. 

 

Examples of Use of the Bernoulli Equation 
 

In this section we illustrate various additional applications of the Bernoulli 

equation. Between any two points, (1) and (2), on a streamline in steady, inviscid, 

incompressible flow the Bernoulli equation can be applied in the form. 

 

𝑃1 +
1

2
𝜌𝑉1

2 + 𝛾𝑧1 = 𝑃2 +
1

2
𝜌𝑉2

2 + 𝛾𝑧2 

 



Obviously if five of the six variables are known, the remaining one can be 

determined. In many instances it is necessary to introduce other equations, such 

as the conservation of mass. 

 

Free Jet 

 

One of the oldest equations in fluid mechanics deals with the flow of a liquid from 

a large reservoir. A modern version of this type of flow involves the flow of coffee 

from a coffee urn as indicated by the below Fig.4. The exit pressure for an 

incompressible fluid jet is equal to the surrounding pressure.  

 

 
Figure 4. The flow of coffee from a coffee urn 
 

The basic principles of this type of flow are shown in the below Fig.5. where a jet 

of liquid of diameter d flows from the nozzle with velocity V. (A nozzle is a device 

shaped to accelerate a fluid.). Application of the above Equation between points 

(1) and (2) on the streamline shown gives 

 

𝑉 = √2𝑔ℎ 

 

Which is the modern version of a result obtained in 1643 by Torricelli 11608–

16472, an Italian physicist. 

 



 
Figure 5. Vertical flow from a tank 

 

For the horizontal nozzle of Fig.6a, the velocity of the fluid at the centerline, V2 

will be slightly greater than that at the top,V1,  and slightly less than that at the 

bottom,V3, due to the differences in elevation. In general, 𝑑 ≪ ℎ as shown in 

Fig.4.10b and we can safely use the centerline velocity as a reasonable “average 

velocity.”  From another assumption a velocity factor can be used for real velocity. 

 

Velocity factor    𝐶𝑣 =
𝑟𝑒𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
=

𝑉𝑟

𝑉𝑡
=

𝑉𝑟

√2𝑔ℎ
 

 

If the exit is not a smooth, well-contoured nozzle, but rather a flat plate as shown 

in Fig.6c, the diameter of the jet, dj,  will be less than the diameter of the hole, dh. 

This phenomenon, called a vena contracta effect, is a result of the inability of the 

fluid to turn the sharp 90° corner indicated by the dotted lines in the figure. 

 

 
Figure 6. Horizontal flow from a tank (a and b) and Vena contracta effect for 

a sharp-edged orifice (c). 

 

The vena contracta effect is a function of the geometry of the outlet. Some typical 

configurations are shown in the below Fig.7 along with typical values of the 

experimentally obtained contraction coefficient, 𝐶𝑐 =
𝐴𝑗

𝐴ℎ 
= (

𝑑𝑗

𝑑ℎ
)2. Where Aj and 



Ah are the areas of the jet at the vena contracta and the area of the hole, 

respectively. 𝐴𝑗 =
𝜋𝑑𝑗

2

4
     and      𝐴ℎ =

𝜋𝑑ℎ
2

4
. Then the flow rate for free jet  𝑄 =

𝐶𝑣𝐶𝑐𝐴ℎ√2𝑔ℎ = 𝐶𝑑𝐴ℎ√2𝑔ℎ .  Cd=CcCv can be taken to be 0.62 for free jet. 

 

 
Figure 7. Typical flow patterns and contraction coefficients for various round 

exit configurations. (a) Knife edge, (b) Well rounded, (c) Sharp edge, (d) Re-

entrant. 
 

Confined Flows 
 

In many cases the fluid is physically constrained within a device so that its 

pressure cannot be prescribed a priori as was done for the free jet examples above. 

Such cases include nozzles and pipes of variable diameter for which the fluid 

velocity changes because the flow area is different from one section to another. 

For these situations it is necessary to use the concept of conservation of mass (the 

continuity equation) along with the Bernoulli equation. For the needs of this 

chapter we can use a simplified form of the continuity equation obtained from the 

following intuitive arguments. Consider a fluid flowing through a fixed volume 

(such as a syringe) that has one inlet and one outlet as shown in Fig.8a. If the flow 

is steady so that there is no additional accumulation of fluid within the volume, 

the rate at which the fluid flows into the volume must equal the rate at which it 

flows out of the volume (otherwise, mass would not be conserved). 



 
Figure 8. (a) Flow through a syringe. (b) Steady flow into and out of a 

volume. 

 

The continuity equation for incompressible flow can be given as Q1=Q2 or 

A1V1=A2V2. Where; Q1 is the inlet flow rate, Q2 is the outlet flow rate, A1 is the 

inlet cross section area, A2 is the outler cross section area, V1 is the inlet velocity 

of fluid, V2 is the outlet velocity of fluid.  

 

Example: Air flows steadily from a tank, through a hose of diameter and exits to 

the atmosphere from a nozzle of diameter as shown in Fig.. The pressure in the 

tank remains constant at 3.0 kPa (gage) and the atmospheric conditions are 

standard temperature and pressure. Determine the flowrate and the pressure in the 

hose. 

 

 
 

Solution:  

 

𝑃1 +
1

2
𝜌𝑉1

2 + 𝛾𝑧1 = 𝑃2 +
1

2
𝜌𝑉2

2 + 𝛾𝑧2 = 𝑃3 +
1

2
𝜌𝑉3

2 + 𝛾𝑧3 

 

With the assumption that z1=z2=z3 (horizontal hose ), V1=0 (large tank), and 

P3=0 (free jet), this becomes 

 

𝑉3 = √
2𝑃1

𝜌
    and     𝑃2 = 𝑃1 −

1

2
𝜌𝑉2

2  (2) 

 

The density of the air in the tank is obtained from the perfect gas law, using 

standard absolute pressure and temperature, as 

 



𝜌 =
𝑃1

𝑅𝑇1
==

[3000 + 101000]

286.9 × (15 + 273)
= 1.26 𝑘𝑔/𝑚3 

Thus, we find that  

 

𝑉3 = √
2 × 3000

1.26
= 69 𝑚/𝑠 

 

𝑄 = 𝐴3𝑉3 =
𝜋𝑑2

4
𝑉3 =

𝜋

4
(0.01)2 × 69 = 0.00542 𝑚3/𝑠 

 

The pressure within the hose can be obtained from Eq. 1 and the continuity 

equation A2V2=A3V3 Hence  

 

𝑉2 =
𝐴3𝑉3

𝐴2
= (

𝑑

𝐷
)2𝑉3 = (

0.01

0.03
)2(69) = 7.67 𝑚/𝑠 

 

And  𝑃2 = 3000 −
1

2
× 1.26 × 7.67 = 2963 𝑃𝑎 

 

In general, an increase in velocity is accompanied by a decrease in pressure. For 

example, the velocity of the air flowing over the top surface of an airplane wing 

is, on the average, faster than that flowing under the bottom surface. Thus, the 

net pressure force is greater on the bottom than on the top—the wing generates a 


