Solutions

As was stated before, one of the goals In this course is to solve, or find
solutions of differential equations. In the next definition we consider the
concept of a solution of an ordinary differential equation.

Definition 2:

Any function ¢ defined on an interval I and possessing at least n
derivatives that are continuous on I, which when substituted into
an nth-order ordinary differential equation reduces the equation
to an identity, is said to be a solution of the equation on the
Interval.
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EXAMPLE 1(Verification of a Solution)

. Verify that the indicated function is a solution of the given differential equation on the
interval (—oo, o).

(a) dy/dx = xy"% y =1 (b) y' =2y +y=0; y=xe"

SOLUTION One way of verifying that the given function is a solution is to see, after
substituting, whether each side of the equation is the same for every x in the interval.

(a) From
d 1 1
left-hand side: D@ =-2
dx 16 4
1 1z 1 1
right-hand side: xyli? =x - (— r‘) =x (— IE) = —x3,
16 4 4

we see that each side of the equation is the same for every real number x. Note
that y'> = 1 x? is, by definition, the nonnegative square root of 1= x*.

(b) From the derivatives y' = xe* + ¢* and y" = xe* + 2¢* we have, for every real

number x,
left-hand side: y' =2y + y = (xe* + 2€") — 2(xe* + €") + xe' = 0,
right-hand side: 0. |
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Note, too, that In Example 1 each differential
equation possesses the constant solution y =
0,—o0 < x < oo, A solution of a differential equation
that Is identically zero on an interval | Is said to be
a trivial solution.
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SOLUTION CURVE

The graph of a solution ¢ of an ODE Is called a solution curve. Since
¢ Is a differentiable function, it is continuous on its Interval | of
definition. Thus there may be a difference between the graph of the
function ¢ and the graph of the solution ¢. Put another way, the domain
of the function ¢ need not be the same as the interval | of definition (or
domain) of the solution ¢. Example 2 illustrates the difference.
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EXAMPLE 2(Function versus Solution)

(b) solution y = 1/x, (0, o)

FIGURE 1.1.1
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The functiony = 1/x
is not the same as the solutiony = 1/x

The domain of y = 1/x, considered simply as a function, is the set of all real num-
bers x except 0. When we graph y = 1/x, we plot points in the xy-plane corre-
sponding to a judicious sampling of numbers taken from its domain. The rational
function y = 1/x is discontinuous at 0, and its graph, in a neighborhood of the ori-
gin, is given in Figure 1.1.1(a). The function y = 1/x is not differentiable at x = 0,
since the y-axis (whose equation is x = 0) is a vertical asymptote of the graph.
Now y = 1/x is also a solution of the linear first-order differential equation
xy" + vy = 0. (Verify.) But when we say that y = 1/x is a solution of this DE, we
mean that it is a function defined on an interval / on which it is differentiable and
satisfies the equation. In other words, y = 1/x is a solution of the DE on any inter-
val that does not contain 0, such as (=3, —1), % 10), (—2=2, 0), or (0, =). Because
the solution curves defined by y = 1/x for =3 <x < —1 and% < x < 10 are sim-
ply segments, or pieces, of the solution curves defined by y = 1/x for —ec < x < 0
and 0 << x << oo, respectively, it makes sense to take the interval [ to be as large as
possible. Thus we take [ to be either (—22, 0) or (0, =). The solution curve on (0, =)
is shown in Figure 1.1.1(b). |




EXPLICIT AND IMPLICIT SOLUTIONS

EXPLICIT AND IMPLICIT SOLUTIONS You should be familiar with the terms
explicit functions and implicit functions from your study of calculus. A solution in
which the dependent variable is expressed solely in terms of the independent
variable and constants is said to be an explicit solution. For our purposes, let us
think of an explicit solution as an explicit formula y = ¢(x) that we can manipulate,
evaluate, and differentiate using the standard rules. We have just seen in the last two
examples that y = I—'f_.r‘*, y=uxe*, and vy = 1/x are, in turn, explicit solutions
of dy/dx = xy"?, ¥ — 2y" + y =0, and xy' + y = 0. Moreover, the trivial solu-
tion y = 0 is an explicit solution of all three equations. When we get down to
the business of actually solving some ordinary differential equations, you will
see that methods of solution do not always lead directly to an explicit solution
v = ¢(x). This is particularly true when we attempt to solve nonlinear first-order
differential equations. Often we have to be content with a relation or expression

Gix, v) = 0 that defines a solution ¢ implicitly.
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Definition 3: (Implicit Solution of an ODE)

A relation G(x,y) = 0is said to be an implicit solution of an ordinary
differential equation (1) on an interval I, provided that there exists at

least one function ¢ that satisfies the relation as well as the
differential equation on |I.
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EXAMPLE 3(Verification of an Implicit Solution)

Vi

. f _\5; The relation x* + y? = 25 is an implicit solution of the differential equation
\j dy  «x

- (8

dx y

(a) implicit solution

X+yi=25 on the open interval (—35, 5). By implicit differentiation we obtain

¥y

T d d d dy
1 —x+—y =—125 2x +2y—=0.
f\S dx dxyz dx o ydx

R N I N B N B B

Solving the last equation for the symbol dy/dx gives (8). Moreover, solving
x>+ y> =25 for y in terms of x yields y = =1/25 — x%. The two functions

o V=)= V25 —Zand y = d(x) = — /25 — 2 satisfy the relation (that is,
nemme x>+ @1 =25 and x* + ¢$3 = 25) and are explicit solutions defined on the interval
st (—35, 5). The solution curves given in Figures 1.1.2(b) and 1.1.2(c) are segments of

1 the graph of the implicit solution in Figure 1.1.2(a). H

G R [ I |

T

(¢) explicit solution

y=-V25—xl -5<x<5

FIGURE 1.1.2  An implicit solution
and two explicit solutions of y' = —x/y
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TC FAMILIES OF SOLUTIONS

The study of differential equations is similar to that of integral calculus. In
some texts a solution ¢ is sometimes referred to as an integral of the
equation, and its graph is called an integral curve. When evaluating an
antiderivative or indefinite integral in calculus, we use a single constant c
of integration.

Analogously, when solving a first-order differential equation F(x,y,y’) =
0, we usually obtain a solution containing a single arbitrary constant or
parameter c. A solution containing an arbitrary constant represents a set
G(x,y,c) = 0 of solutions called a one-parameter family of solutions.

When solving an nth-order differential equation F(x, y,y’,...,y(")) = 0,
we seek an n-parameter family of solutions G(x,y,cq,c,,...,¢,;) = 0.
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This means that a single differential equation can possess an infinite

number of solutions corresponding to the unlimited number of choices for
the parameter(s).

» A solution of a differential equation that is free of arbitrary parameters is
called a particular solution.

» The set of all solutions of a DE Is called general solution.

> Note that the general solution of a DE involves the same number of
parameters with the order of the DE. That is if the DE is 4th order, the
parameters in the general solution should be 4.
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For example, the one-parameter family

y = ¢x — x cos x is an explicit solution of the linear first-order equation xy' — y =
x? sin x on the interval (—2<, =). (Verify.) Figure 1.1.3, obtained by using graphing soft-
ware, shows the graphs of some of the solutions in this family. The solution y =
—x cos x, the blue curve in the figure, is a particular solution corresponding to ¢ = (.
Similarly, on the interval ( —o2, 2), y = ¢je* + coxe” is a two-parameter family of solu-
tions of the linear second-order equation y" — 2y" + y = 0 in Example 1. (Verify.)
Some particular solutions of the equation are the trivial solution y = 0 (¢; = ¢2 = 0),

vyv=xe'(ci=0,c2=1),y=5¢" — 2xe* (c; = 5, ca = —2), and so on.

u

i

FIGURE 1.1.3 Some solutions of

P — 1 ot
I}r :;"' X7 s8In X
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Sometimes a differential equation possesses a solution that is not a
member of a family of solutions of the equation —that is, a solution that
cannot be obtained by specializing any of the parameters in the family of
solutions. Such an extra solution is called a singular solution.

For example, we have seen that
y=+x*andy =0

are solutions of the differential equation dy/dx = xy"?on (—, ).
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1.2 INITIAL-VALUE PROBLEMS

INTRODUCTION We are often interested in problems in which we seek a solution y(x) of a
differential equation so that y(x) satisfies prescribed side conditions—that is, conditions imposed on
the unknown y(x) or its derivatives. On some interval I containing x; the problem

d™y

Yy _ . (n—1)
o =feyy,. )

Solve:

Subjectto:  ¥(xp) = ¥o. ¥ (%) = yp. .. .. " xg) = ¥

where vy, Vi.....Vs—; are arbitrarily specified real constants, is called an initial-value
problem (IVP). The values of v(x) and its first n — 1 derivatives at a single point xg. v(xp) = vo.
yi(xe) =V ..., v~ D(xg) = y,—1, are called initial conditions.

Dr. Gizem SEYHAN OZTEPE-Ankara University Dept. of Mathematics

(1




solutions of the DE

5 I |t

FIGURE 1.2.1
first-order IVP

Solution of

solutions of the DE

FIGURE 1.2.2 Solution of
second-order IVP
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FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an
mnth-order initial-value problem. For example,

dy
Solve: — = (1, ¥)

dx (2)
Sibject to: ¥(xg) = ¥

dy

— = f(L,¥,¥)

and Solve: e JIX N, ¥) (3)

Subject to: Yixg) = ¥ ¥ = ¥

are first- and second-order initial-value problems. respectively. These two problems
are easy to interpret in geometric terms. For (2) we are seeking a solution yi{x) of the
differential equation ¥ = f{x, ¥) on an interval [ containing xo so that its graph passes
through the specified point (X, vip). A solution curve is shown in blue in Figure 1.2.1.
For (3) we want to find a solution ¥(x) of the differential equation ¥* = f(x, ¥, ¥') on
an interval f containing xp so that its graph not only passes through (xg, vo) but the slope
of the curve at this point is the number v,. A solution curve is shown in blue in
Figure 1.2.2. The words initial conditions derive from physical systems where the
independent variable is time f and where v(f;) = vp and ¥'(Ig) = ¥, represent the posi-
tion and velocity, respectively, of an object at some beginning, or initial, time fy.
Solving an sth-order initial-value problem such as (1) frequently entails first
finding an n-parameter family of solutions of the given differential equation and then
using the a initial conditions at x; to determine numerical values of the 7 constants in

the family. The resulting particular solution is defined on some interval [ containing
the initial point xg.
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Solve guestions.
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Existence and Uniqueness

Two fundamental questions arise in considering an initial-
value problem:

» Does a solution of the problem exist?
» If a solution exists, is it unigue?
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Example 4 (An IVP Can Have Several Solutions)

Vy=x16
]__
IX, + —

u

ya0 (0, 0y *
FIGURE 1.2.5 Two solutions
of the same [VP

Each of the functions v =0 and v = ﬁ.r‘ satisfies the differential equation
dy/dx = xy'* and the nitial condition v(0) = 0, so the initial-value problem

dy _ xy, (=10
dx

has at least two solutions. As illustrated i Figure 1.2.5, the graphs of both functions
pass through the same point (0, (). H
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Theorem 1 (Existence of a Unique Solution)

u

Let R be a rectangular region in the xy-plane definedbya=x=b,c=v=d
that contains the point (xg, ¥p) in its interior. If f(x, v) and 4f /v are continuous
on R, then there exists some interval Iy (xg — h, xp + h), h = 0, contamed 1n
[a. b]. and a unique function v(x), defined on [, that 15 a solution of the mitial-
value problem (2).

B o

B R
|R| |
[ |
| |
sl
I ':I[h-}'bh |
| |

) S B R s
| [
L1 L 1.
d —1l— b ¥

FIGURE 1.2.6 Rectangular region R
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Example 5 (Revisited Example 4)

We saw in Example 4 that the differential equation

& _ s y1/2
dx XY
possesses at least two solutions whose graphs pass through (0, 0). Inspection of

the functions
of X

oy 2y1/2

shows that they are continuous in the upper half-plane defined by y > 0. Hence
Theorem 1 enables us to conclude that through any point (x4, vo), Yo > 0 In the
upper half-plane there is some interval centered at x, on which the given
differential equation has a unique solution.

fGx,y) =xy'? and

Thus, for example, even without solving it, we know that there exists some
Interval centered at 2 on which the initial-value problem

dy
— = xy2,y(2) =1
= ,¥(2)
has a unique solution.
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Remark

The conditions in Theorem 1 are sufficient but not necessary. This
means that when f (x,y) and g—f/ are continuous on a rectangular region

R, It must always follow that a solution of (2) exists and is unique
whenever (x,, v,), IS a point interior to R.

However, if the conditions stated in the hypothesis of Theorem 1 do not
hold, then anything could happen:

Problem (2) ,

» may still have a solution and this solution may be unique,
or

» (2) may have several solutions,

or

» It may have no solution at all.
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