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3. DIFFERENTIAL EQUATIONS AS MODELS

In this section we Introduce the notion of a differential
equation as a mathematical model and discuss some
specific models in biology, chemistry, and physics.

MATHEMATICAL MODELS

It IS often desirable to describe the behavior of some real-life
system or phenomenon, whether physical, sociological, or
even economic, iIn mathematical terms.

The mathematical description of a system of phenomenon is
called a mathematical model and Is constructed with
certain goals in mind.
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For example,

» we may wish to understand the mechanisms of a certain
ecosystem by studying the growth of animal populations in
that system,

or

» we may wish to date fossils by analyzing the decay of a
radioactive substance either in the fossil or in the stratum In
which it was discovered.
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gIM Construction of a mathematical model of a system starts with

|. 1dentification of the variables that are responsible for
changing the system. We may choose not to incorporate
all these variables into the model at first. In this step we
are specifying the level of resolution of the model.

. we make a set of reasonable assumptions, or
hypotheses, about the system we are trying to describe.
These assumptions will also include any empirical laws
that may be applicable to the system.
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For some purposes it may be perfectly within reason to be
content with low resolution models.

For example, you may already be aware that in beginning
physics courses, the retarding force of air friction Is
sometimes ignored in modeling the motion of a body falling
near the surface of the Earth, but if you are a scientist whose
job it Is to accurately predict the flight path of a long-range
projectile, you have to take into account air resistance and
other factors such as the curvature of the Earth.
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Since the assumptions made about a system frequently
Involve a rate of change of one or more of the variables, the
mathematical depiction of all these assumptions may be one
or more equations involving derivatives.

In other words, the mathematical model may be a
differential equation or a system of differential equations.
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Once we have formulated a mathematical model that is either a
differential equation or a system of differential equations, we are faced
with the not insignificant problem of trying to solve it.

If we can solve it, then we deem the model to be reasonable If its
solution Is consistent with either experimental data or known facts
about the behavior of the system.

But if the predictions produced by the solution are poor, we can either
Increase the level of resolution of the model or make alternative
assumptions about the mechanisms for change in the system.

The steps of the modeling process are then repeated, as shown in the
following diagram:
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giIM Of course, by iIncreasing the resolution, we add to the
complexity of the mathematical model and increase the
likelihood that we cannot obtain an explicit solution.

A mathematical model of a physical system will often involve
the variable time t.

A solution of the model then gives the state of the system;
In other words,

the values of the dependent variable (or variables) for
appropriate values of t describe the system in the past,
present, and future.
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POPULATION DYNAMICS

One of the earliest attempts to model human population
growth by means of mathematics was by the English
economist Thomas Malthus in 1798.

» Basically, the idea behind the Malthusian model is the
assumption that the rate at which the population of a
country grows at a certain time iIs proportional (This
means that one quantity is a constant multiple of the other:
u = kv) to the total population of the country at that time.

» In_other words, the more people there are at time t, the
more there are going to be in the future.
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In mathematical terms, if Pg&) denotes the total population at time
t, then this assumption can bé expressed as

dP
= = kP (1)

where k Is a constant of proportionality.

This simple model, which fails to take into account many factors
that can influence human populations to either grow or decline
(immigration and emigration, for example), nevertheless turned out
to be fairly accurate In 7predlctlngq the population of the United
States during the years 1790-1860.

Populations that grow at a rate described by (1) are rare;
nevertheless, (1) is still used to model growth of small populations
over s?o)rt Intervals of time (bacteria growing in a petri dish, for
example).
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RADIOACTIVE DECAY

The nucleus of an atom consists of combinations of protons and
neutrons. Many of these combinations of protons and neutrons are
unstable-that is, the atoms decay or transmute into atoms of another
substance. Such nuclei are said to be radioactive.

For example, over time the highly radioactive radium, Ra-226,
transmutes into the radioactive gas radon, Rn-222. To model the
phenomenon of radioactive decay, it is assumed that the rate dA/dt at
which the nuclei of a substance decay is proportional to the amount
(more precisely, the number of nuclei) A(t) of the substance remaining
at time t:

a4 _

= kA (2)
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Of course, equations (1) and (2) are exactly the same; the difference is
only in the interpretation of the symbols and the constants of
proportionality. For growth, as we expect in (1), k > 0, and for decay, as
in (2), k <0.

» The model (1) for growth can also be seen as the equation % = rS,

which describes the growth of capital S when an annual rate of
Interest r is compounded continuously.

N

The model (2) for decay also occurs in biological applications such as
determining the half-life of a drug —the time that it takes for 50% of a
drug to be eliminated from a body by excretion or metabolism.

N

In chemistry the decay model (2) appears in the mathematical
description of a first-order chemical reaction.
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The point is this:

A single differential equation can serve as a mathematical
model for many different phenomena.

Mathematical models are often accompanied by certain side conditions.
For example, in (1) and (2) we would expect to know, in turn, the initial
population Pyand the initial amount of radioactive substance A, on
hand.

If the initial point in time is taken to be t = 0, then we know that P(0) =
Py and A(0) = A,.

In other words, a mathematical model can consist of an initial-value
problem

Dr. Gizem SEYHAN OZTEPE-Ankara University Dept. of Mathematics



4 NEWTON'S LAW OF COOLING/WARMING

According to Newton’s empirical law of cooling/warming, the rate at
which the temperature of a body changes is proportional to the
difference between the temperature of the body and the temperature of
the surrounding medium, the so-called ambient temperature.

If T(t) represents the temperature of a body at time t, T,, the
temperature of the surrounding medium, and dT/dt the rate at which
the temperature of the body changes, then Newton's law of

cooling/warming translates into the mathematical statement
dT
E — k(T o Tm) (3)

where k is a constant of proportionality.
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SPREAD OF A DISEASE A contagious disease—for example, a flu virus—is
spread throughout a community by people coming into contact with other people. Let
x(#) denote the number of people who have contracted the disease and y(f) denote the
number of people who have not yet been exposed. It seems reasonable to assume that
the rate dx/dr at which the disease spreads is proportional to the number of encoun-
ters, or interactions, between these two groups of people. If we assume that the num-
ber of interactions 1s jointly proportional to x(r) and v(f)—that 1s, proportional to the
product xy—then

— = kxy, (4)

where k 1s the usual constant of proportionality. Suppose a small community has a
fixed population of n people. If one infected person i1s introduced into this commu-
nity, then it could be argued that x(r) and v(¢) are related by x + v=n + 1. Using
this last equation to eliminate y in (4) gives us the model

dx
i kxin + 1 — x). (5)

An obvious mmitial condition accompanying equation (3) 1s x(0) = 1.
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CHEMICAL REACTIONS The disintegration of a radioactive substance, governed
by the differential equation (1), is said to be a first-order reaction. In chemistry
a few reactions follow this same empirical law: If the molecules of substance A
decompose into smaller molecules, it 1s a natural assumption that the rate at which
this decomposition takes place is proportional to the amount of the first substance
that has not undergone conversion; that is, if X(r) is the amount of substance A
remaining at any time, then dX/dt = kX, where k is a negative constant since X is
decreasing. An example of a first-order chemical reaction 1s the conversion of -butyl
chloride. (CH3)3CCl, into t-butyl alcohol, (CH3)sCOH:

(CH,),CCl + NaOH — (CH,);COH + NaCl.

Only the concentration of the t-butyl chloride controls the rate of reaction. But in the
reaction

CH;Cl + NaOH — CH;OH + NaCl

one molecule of sodium hydroxide, NaOH, is consumed for every molecule of
methyl chlonde, CH;(Cl, thus forming one molecule of methyl alcohol, CH;0H, and
one molecule of sodium chloride, NaCl. In this case the rate at which the reaction
proceeds is proportional to the product of the remaining concentrations of CH;Cl and
NaOH. To describe this second reaction in general, let us suppose one molecule of a
substance A combines with one molecule of a substance B to form one molecule of a
substance C. If X denotes the amount of chemical C formed at time ¢ and if @ and
are, in turn, the amounts of the two chemicals A and B at r = 0 (the initial amounts),
then the instantaneous amounts of A and B not converted to chemical C are & — X
and B — X, respectively. Hence the rate of formation of C is given by

dX
— = kla = X)B - X), (6)

where k is a constant of proportionality. A reaction whose model 15 equation (6) is
said to be a second-order reaction.
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MIXTURES

The mixing of two salt solutions of differing concentrations
gives rise to a first-order differential equation for the amount
of salt contained in the mixture.

Let us suppose that a large mixing tank initially holds 300
gallons of brine (that is, water in which a certain number of
pounds of salt has been dissolved).
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Syl ot Another brine solution is pumped into the large tank at a rate of 3
. gallons per minute; the concentration of the salt in this inflow is 2
pounds per gallon. When the solution in the tank is well stirred, it is
pumped out at the same rate as the entering solution. See Figure
1.3.1. If A(t) denotes the amount of salt (measured in pounds) in the
tank at time t, then the rate at which A(t) changes is a net rate:

constant |
300 gal

) = l,'-‘..‘rz - Rul.e." ﬂr}

dA ( input mrf) (ompur rate
dt — \ of salt of salt

The input rate R;, at which salt enters the tank is the product of the inflow concentra-
output rate of brine \'1'{- tion of salt and the inflow rate of fluid. Note that R;, 1s measured in pounds per
3 gal/min minute:

FIGURE 1.3.1T Mixing tank

concentration
of salt input rate mput rate
in inflow of brine of salt

| | |
R, = (2 Ib/gal) - (3 gal/min) = (6 Ib/min).

Now, since the solution is being pumped out of the tank at the same rate that it is
pumped in, the number of gallons of brine in the tank at time  1s a constant 300 gal-
lons. Hence the concentration of the salt in the tank as well as in the outflow is
c(f) = A(H/300 Ib/gal, so the output rate R, of salt is

concentration

of salt output rate  output rate
m outflow of brine of salt
| | |
Alr) . Alr) .
R.= (ﬁ ]b."ga]) - (3 gal/min) = 100 Ib/min.
The net rate (7) then becomes

dA A dA | i
E—ﬁ—ﬁ or E-l_ﬁ'q_b. (8)
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L || l SERIES CIRCUITS Consider the single-loop series circuit shown in Figure 1.3.3(a),
¢ containing an inductor, resistor, and capacitor. The current in a circuit after a switch
(a) LRC-series circuit is closed is denoted by i(¢); the charge on a capacitor at time ¢ is denoted by g(t). The
letters I, R, and C are known as inductance, resistance, and capacitance, respectively,
Inductor and are generally constants. Now according to Kirchhoff’s second law, the im-

inductance L: henries {h}_

pressed voltage E(f) on a closed loop must equal the sum of the voltage drops in the

L di
voltage drop across: L 3, loop. Figure 1.3.3(b) shows the symbols and the formulas for the respective voltage

AR, drops across an inductor, a capacitor, and a resistor. Since current i(f) is related to
i— UYWL charge g(f) on the capacitor by { = dg/dt, adding the three voltages
L

inductor resistor capacitor

Resistor di d IE]' dq 1

. ! L—=L— iIR=R— and —q
resistance R: ohms (Q) s -
voltage drop across: iR dt drl dt C

and equating the sum to the impressed voltage yields a second-order differential
i equation

Capacitor L d-.? + Rd_q + l g = E‘(IL {] ])
capacitance C: farads () dr d C

voltage drop across: lEq

[
L
c

(b)

FIGURE 1.3.3 Symbols, units, and

voltages. Current i(f) and charge g(t) are
measured in amperes (A) and coulombs
(C), respectively
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FALLING BODIES To construct a mathematical model of the motion of a body
moving in a force field, one often starts with Newton's second law of motion. Recall
from elementary physics that Newton’s first law of motion states that a body either
will remain at rest or will continue to move with a constant velocity unless acted on
by an external force. In each case this is equivalent to saying that when the sum of
the forces F = ¥, F,—that is, the net or resultant force — acting on the body is zero,
then the acceleration a of the body is zero. Newton's second law of motion
indicates that when the net force acting on a body is not zero. then the net force is
proportional to its acceleration a or, more precisely, F' = ma, where m is the mass of
the body.

Now suppose a rock is tossed upward from the roof of a building as illustrated in
Figure 1.3.4. What is the position s5{t) of the rock relative to the ground at time 7 The
acceleration of the rock is the second derivative d’s/dt*. If we assume that the up-
ward direction is positive and that no force acts on the rock other than the force of
gravity, then Newton’s second law gives

d’s d’s
as_ A 12
ST T (2
ground In other words, the net force is simply the weight F = F; = —W of the rock near the
FIGURE 1.3.4 Position of rock surface of the Earth. Recall that the magnitude of the weight is W = mg, where m is

measured from ground level

the mass of the body and g is the acceleration due to gravity. The minus sign in (12} is
used because the weight of the rock is a force directed downward, which is opposite
to the positive direction. If the height of the building is s, and the initial velocity of the
rock 1s vy, then s is determined from the second-order initial-value problem

d’s )
—= = —& s0) =5, s'(0)=w, (13)
dt

Although we have not been stressing solutions of the equations we have con-
structed, note that (13) can be solved by integrating the constant —g twice with
respect to f. The initial conditions determine the two constants of integration.
From elementary physics you might recognize the solution of (13) as the formula
s() = —1eff + vot + 5,
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There are three different types of approaches to, or analyses of, differential equations.

Over the centuries differential equations would often spring from the efforts of a scientist or
engineer to describe some physical phenomenon or to translate an empirical or experimental
law into mathematical terms. As a consequence a scientist, engineer, or mathematician would
often spend many years of his or her life trying to find the solutions of a DE.

With a solution in hand, the study of its properties then followed. This quest for solutions is
called by some the analytical approach to differential equations.

Once they realized that explicit solutions are at best difficult to obtain and at worst impossible
to obtain, mathematicians learned that a differential equation itself could be a font of valuable
information. It is possible, in some instances, to glean directly from the differential equation
answers to questions such as

» Does the DE actually have solutions?

» If a solution of the DE exists and satisfies an initial condition, is it the only such solution?
> What are some of the properties of the unknown solutions?

» What can we say about the geometry of the solution curves?

Such an approach is qualitative analysis.
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Finally, if a differential equation cannot be solved by analytical methods, yet
we can prove that a solution exists, the next logical query is Can we
somehow approximate the values of an unknown solution?

Here we enter the realm of numerical analysis. An affirmative answer to the
last question stems from the fact that a differential equation can be used as a
cornerstone for constructing very accurate approximation algorithms.

(a) analytical {b) gualitative {c) numerical

FIGURE 1.3.8 Different approaches to the study of differential equations
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