The Tangent

The tangent is a line that touches the curve:

same direction as the curve at the point of contact

Find the equation for the tangent to the curve x^2 at point (1, 1).

- We need to know the slope *m* of x^2 at point P = (1, 1).
- ► Take point $Q = (x, x^2)$ with $Q \neq P$ to compute the slope.

The slope from *P* to *Q* is:

$$m_{PQ} = \frac{Q_y - P_y}{Q_x - P_x} = \frac{x^2 - 1}{x - 1}$$

Find the equation for the tangent to the curve x^2 at point (1, 1).

- We need to know the slope *m* of x^2 at point P = (1, 1).
- ► Take point $Q = (x, x^2)$ with $Q \neq P$ to compute the slope.

The slope from *P* to *Q* is:

$$m_{PQ} = \frac{Q_y - P_y}{Q_x - P_x} = \frac{x^2 - 1}{x - 1}$$

Find the equation for the tangent to the curve x^2 at point (1, 1).

- We need to know the slope *m* of x^2 at point P = (1, 1).
- ► Take point $Q = (x, x^2)$ with $Q \neq P$ to compute the slope.

The slope from *P* to *Q* is:

$$m_{PQ} = \frac{Q_y - P_y}{Q_x - P_x} = \frac{x^2 - 1}{x - 1}$$

X	2	1.5	1.1	
m _{PQ}	3	2.5	2.1	

Find the equation for the tangent to the curve x^2 at point (1, 1).

- We need to know the slope *m* of x^2 at point P = (1, 1).
- ► Take point $Q = (x, x^2)$ with $Q \neq P$ to compute the slope.

The slope from *P* to *Q* is:

$$m_{PQ} = \frac{Q_y - P_y}{Q_x - P_x} = \frac{x^2 - 1}{x - 1}$$

$$x \quad 2 \quad 1.5 \quad 1.1 \quad 1.01$$

$$m_{PQ} \quad 3 \quad 2.5 \quad 2.1 \quad 2.01$$
...

The closer Q to P, the closer m_{PQ} gets to 2.

Find the equation for the tangent to the curve x^2 at point (1, 1).

- We need to know the slope *m* of x^2 at point P = (1, 1).
- ► Take point $Q = (x, x^2)$ with $Q \neq P$ to compute the slope.

The slope from *P* to *Q* is:

$$m_{PQ} = \frac{Q_y - P_y}{Q_x - P_x} = \frac{x^2 - 1}{x - 1}$$

$$x \quad 2 \quad 1.5 \quad 1.1 \quad 1.01$$

$$m_{PQ} \quad 3 \quad 2.5 \quad 2.1 \quad 2.01$$
...

The closer *Q* to *P*, the closer m_{PQ} gets to 2. Suggests that in *P* the slope m = 2.

Thus the tangent is y - 1 = 2(x - 1) or y = 2x - 1.

The Limit of a Function

We investigate the function $x^2 - x + 1$ for values of x near 2.

from below (x < 2):

X	$f(\mathbf{x})$
1	1
1.5	1.75
1.9	2.71
1.99	2.9701
1.999	2.9970

from above (x > 2):

X	$f(\mathbf{x})$
2.5	4.75
2.2	3.64
2.1	3.31
2.01	3.0301
2.001	3.0030

From the tables we see: as *x* approaches 2, f(x) approaches 3.

$$\lim_{x \to 2} (x^2 - x + 1) = 3$$

Suppose f(x) is defined close to *a* (but not necessarily *a* itself). We write

$$\lim_{x\to a} f(x) = L$$

spoken: "the limit of f(x), as x approaches a, is L"

if we can make the values of f(x) arbitrarily close to *L* by taking *x* to be sufficiently close to *a* but not equal to *a*.

The values of f(x) get closer to L as x gets closer to a.

Alternative notation for $\lim_{x\to a} = L$:

$$f(x) \rightarrow L$$
 as $x \rightarrow a$

Limit: Continued

 $\lim_{x\to a} f(x) = L$ if we can make the values of f(x) arbitrarily close to *L* by taking *x* sufficiently close to *a* but not equal to *a*.

Note that we never consider f(x) for x = a. The value of f(a) does not matter. In fact, f(x) need not be defined for x = a.

In each of these cases we have $\lim_{x\to a} f(x) = L!$

Guess the value of

$$\lim_{x\to 1}\frac{x-1}{x^2-1}$$

The function is not defined at x = 1. (does not matter for the limit)

from below:	
X	$f(\mathbf{x})$
0.5	0.66667
0.9	0.52632
0.99	0.50251
0.999	0.50025

X	$f(\mathbf{x})$
1.5	0.40000
1.1	0.47619
1.01	0.49751
1.001	0.49975

From these values we guess that $\lim_{x\to 1} \frac{x-1}{x^2-1} = 0.5$.

Guess the value of $\lim_{x\to 1} g(x)$ where

$$g(x) = \begin{cases} \frac{x-1}{x^2-1} & \text{for } x \neq 1\\ 2 & \text{for } x = 1 \end{cases}$$

As on the previous slide $\lim_{x\to 1} g(x) = 0.5$. (recall that g(1) does not matter for $\lim_{x\to 1} g(x)$).

Guess the value of

$$\lim_{x\to 0}\sin\frac{\pi}{x}$$

This suggest that the limit is 0.

However, this is wrong:

 $sin(\frac{\pi}{x}) = 0$ for arbitrarily small *x*, but also $sin(\frac{\pi}{x}) = 1$ for arbitrarily small *x*; e.g. $x = \frac{1}{2.5}, \frac{1}{4.5}, \frac{1}{6.5}, \dots$ Hence: The limit $\lim_{x\to 0} sin \frac{\pi}{x}$ does not exist.

Limit: Caution with Calculators

2 3

0

X	$f(\mathbf{x})$
±1.0	0.16228
±0.5	0.16553
±0.1	0.16662
±0.01	0.16667
±0.0001	0.20000
±0.00001	0.00000
±0.000001	0.00000

Is the limit 0? NO

Problem: calculator gives wrong values! For small x it rounds $\sqrt{x^2 + 9} - 3$ to 0.

0

0.2

0.4 X

The correct limit is $\frac{1}{6} = 0.166666...$

Guess the value of

X	$f(\mathbf{x})$
1	1.000028
0.5	0.124920
0.1	0.001088
0.01	0.000101

Looks like the limit is 0. But if we continue:

X	$f(\mathbf{x})$
0.005	0.00010009
0.001	0.00010000

We see actually that:

The value of the limit is 0.0001.

Determining limits via calculators is a bad idea!

We have seen several sources of errors:

- we might stop too early, and draw wrong conclusions
- wrong results due to rounding in the calculator

We need to compute limits precisely using limits laws...

The Heaviside function *H* is defined by

$$H(t) = \begin{cases} 0 & \text{if } t < 0\\ 1 & \text{if } t \ge 0 \end{cases}$$

What is $\lim_{t\to 0} H(t)$?

- As *t* approaches 0 from the left, H(t) approaches 0.
- As *t* approaches 0 from the right, H(t) approaches 1.

Thus there is not single number that H(t) approaches.

The limit $\lim_{t\to 0} H(t)$ does not exist.

One-Sided Limits (From the Left)

The function *H* is defined by $H(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \ge 0 \end{cases}$

H(t) approaches 0 as t approaches 0 from the left. We write:

$$\lim_{t\to 0^-} H(t) = 0$$

The symbol $t \rightarrow 0^-$ indicates that we consider only values t < 0.

We write $\lim_{x\to a^-} f(x) = L$ and say "the left-hand limit of f(x), as x approaches a, is L", or "the limit of f(x), as x approaches a from the left, is L" if we can make the values f(x) arbitrarily close to L by taking x sufficiently close to a and x < a.

One-Sided Limits (From the Right)

The function *H* is defined by $H(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \ge 0 \end{cases}$

H(t) approaches 1 as t approaches 0 from the right. We write:

$$\lim_{t\to 0^+} H(t) = 1$$

The symbol $t \rightarrow 0^+$ indicates that we consider only values t > 0.

We write $\lim_{x\to a^+} f(x) = L$ and say "the right-hand limit of f(x), as x approaches a, is L", or "the limit of f(x), as x approaches a from the right, is L" if we can make the values f(x) arbitrarily close to L by taking x sufficiently close to a and x > a.

Consider the following graph of function g(x):

Use the graph to estimate the following values:

▶ $\lim_{x\to 2^-} = ?$ (a) 0 (b) 1 (c) 2 (d) 3 (e) does not exist

Consider the following graph of function g(x):

▶
$$\lim_{x\to 2^-} = 2$$

▶ $\lim_{x\to 2^+} = ?$ a 0 b 1 c 2 d 3 e does not exist

Consider the following graph of function g(x):

Use the graph to estimate the following values:

$$Iim_{x\to 2^-} = 2$$

$$\blacktriangleright \lim_{x\to 2^+} = 1$$

▶ $\lim_{x\to 2} = ?$ a 0 b 1 c 2 d 3 e does not exist

Consider the following graph of function g(x):

Use the graph to estimate the following values:

- ► $\lim_{x\to 2^-} = 2$
- $\blacktriangleright \lim_{x\to 2^+} = 1$
- ▶ $\lim_{x\to 2}$ does not exist

▶ $\lim_{x\to 4^-} = ?$ (a) 0 (b) 1 (c) 2 (d) 3 (e) does not exist

Consider the following graph of function g(x):

- ► $\lim_{x\to 2^-} = 2$
- ► $\lim_{x\to 2^+} = 1$
- $\lim_{x\to 2}$ does not exist
- ► $\lim_{x\to 4^-} = 1$
- ▶ $\lim_{x\to 4^+} = ?$ a 0 b 1 c 2 d 3 e does not exist

Consider the following graph of function g(x):

- ► $\lim_{x\to 2^-} = 2$
- ► $\lim_{x\to 2^+} = 1$
- $\lim_{x\to 2}$ does not exist
- ► $\lim_{x\to 4^-} = 1$
- $\blacktriangleright \lim_{x \to 4^+} = 1$
- ▶ $\lim_{x\to 4} = ?$ a 0 b 1 c 2 d 3 e does not exist

Consider the following graph of function g(x):

- ► $\lim_{x\to 2^-} = 2$
- ► $\lim_{x\to 2^+} = 1$
- ▶ $\lim_{x\to 2}$ does not exist
- ► $\lim_{x\to 4^-} = 1$
- $\blacktriangleright \lim_{x \to 4^+} = 1$
- $\blacktriangleright \lim_{x\to 4} = 1$

Consider the following graph of function g(x):

- $\blacktriangleright \lim_{x\to 3^-} g(x) = 3$
- $\blacktriangleright \lim_{x\to 3^+} g(x) = 3$
- $\blacktriangleright \lim_{x\to 3} g(x) = 3$
- $\blacktriangleright \lim_{x\to 1} g(x) = 1$
- g(1) = undefined
- ► *g*(0) = 1

- $\operatorname{Iim}_{x\to 0^-} g(x) = 1$
- $\blacktriangleright \lim_{x\to 0^+} g(x) = -1$
- $\lim_{x\to 0} g(x) = \text{does not exist}$
- $\lim_{x\to 5^-} g(x) = \text{does not exist}$
- ► $\lim_{x\to 5^+} g(x) = 2$
- $\lim_{x\to 5} g(x) = \text{does not exist}$

Infinite Limits

We consider the function $\frac{1}{y^2}$. What is $\lim_{x\to 0} \frac{1}{y^2}$?

As x becomes close to 0, $\frac{1}{x^2}$ becomes very large. The values do not approach a number, so $\lim_{x\to 0} \frac{1}{x^2}$ does not exist!

Nevertheless, in this case, we write

$$\lim_{x\to 0}\frac{1}{x^2}=\infty$$

to indicate that the values become larger and larger.

Infinite Limits: Definition

Suppose f(x) is defined close to *a* (but not necessarily *a* itself). Then we write

$$\lim_{x\to a} f(x) = \infty$$

spoken: "the limit of f(x), as x approaches a, is infinity"

if we can make the values of f(x) arbitrarily large by taking x to be sufficiently close to a (but not equal to a).

Infinite Limits: Definition

Suppose f(x) is defined close to *a* (but not necessarily *a* itself). Then we write

$$\lim_{x\to a} f(x) = -\infty$$

spoken: "the limit of f(x), as x approaches a, is negative infinity"

if we can make the values of f(x) arbitrarily large negative by taking x to be sufficiently close to a (but not equal to a).

Infinite One-Sided Limits

Like wise we define the one-sided infinite limits:

(a)
$$\lim_{x\to a^-} f(x) = \infty$$

(b) $\lim_{x\to a^-} f(x) = -\infty$
(c) $\lim_{x\to a^+} f(x) = \infty$
(d) $\lim_{x\to a^+} f(x) = -\infty$

Note that ∞ and $-\infty$ are not considered numbers.

If $\lim_{x\to a} f(x) = \infty$ then $\lim_{x\to a} f(x)$ does not exist. It indicates a certain way in which the limit does not exist.

Find $\lim_{x \to 3^{-}} \frac{2x}{x-3} \quad \text{and} \quad \lim_{x \to 3^{+}} \frac{2x}{x-3}$

$$\lim_{x \to 3^{-}} \frac{2x}{x-3} = ?$$
 a 0 **b** 1 **c** ∞ **d** $-\infty$

Find $\lim_{x \to 3^{-}} \frac{2x}{x-3} \quad \text{and} \quad \lim_{x \to 3^{+}} \frac{2x}{x-3}$

$$\lim_{x \to 3^-} \frac{2x}{x-3} = -\infty$$

$$\lim_{x \to 3^+} \frac{2x}{x-3} = ? \quad a \ 0 \quad b \ 1 \quad c \ \infty \quad d \ -\infty$$

If x is close to 3 and x < 3 (approaching from the left), then:

- 2x is close to 6,
- x 3 is a small negative number,

► and thus 2x/(x-3) is a large negative number. Hence $\lim_{x\to 3^-} \frac{2x}{x-3} = -\infty$. Similarly for *x* close to 3 and x > 3, but now x - 3 is positive.

Consider the following graph of function g(x):

Use the graph to estimate the following values: f(2) = ? a 0 b 1 c 2 d undefined

Consider the following graph of function g(x):

Consider the following graph of function g(x):

Use the graph to estimate the following values:

►
$$\lim_{x\to 2^-} = 2$$

▶ $\lim_{x\to 2^+} = ?$ a 1 b 2 c ∞ d $-\infty$ e does not exist

Consider the following graph of function g(x):

- ► f(2) = 1
- ► $\lim_{x\to 2^-} = 2$
- $\lim_{x\to 2^+} = -\infty$ (special case of 'does not exist')
- ▶ $\lim_{x\to 2} = ?$ (a) 1 (b) ∞ (c) $-\infty$ (d) does not exist

Consider the following graph of function g(x):

- ► *f*(2) = 1
- ► $\lim_{x\to 2^-} = 2$
- $\lim_{x\to 2^+} = -\infty$ (special case of 'does not exist')
- Iim_{x→2} does not exist

The line x = a is a **vertical asymptote** of a function *f* if at least one of the following statements is true:

$$\lim_{x \to a} f(x) = \infty \qquad \lim_{x \to a^-} f(x) = \infty \qquad \lim_{x \to a^+} f(x) = \infty$$
$$\lim_{x \to a^+} f(x) = -\infty \qquad \lim_{x \to a^+} f(x) = -\infty \qquad \lim_{x \to a^+} f(x) = -\infty$$

What are the vertical asymptotes of

$$f(x) = \frac{2x}{x-3}$$
?

The function has the vertical asymptote x = 3:

$$\lim_{x\to 3^-} f(x) = -\infty$$

What are the vertical asymptotes of

$$f(x) = \frac{x^2 + 2x - 3}{x - 1} ?$$

The function has no vertical asymptotes:

$$\frac{x^2 + 2x - 3}{x - 1} = (x + 3) \text{ for } x \neq 1$$

What are the vertical asymptotes of

$$f(x) = \log_5 x ?$$

The function has the vertical asymptote x = 0:

$$\lim_{x\to 0^+}\log_5 x=-\infty$$