The Tangent

The tangent is a line that touches the curve:

- same direction as the curve at the point of contact

The Tangent: Example

Find the equation for the tangent to the curve x^{2} at point $(1,1)$.

- We need to know the slope m of x^{2} at point $P=(1,1)$.
- Take point $Q=\left(x, x^{2}\right)$ with $Q \neq P$ to compute the slope.

The slope from P to Q is:

$$
m_{P Q}=\frac{Q_{y}-P_{y}}{Q_{x}-P_{x}}=\frac{x^{2}-1}{x-1}
$$

x	2			
$m_{P Q}$	3			

The Tangent: Example

Find the equation for the tangent to the curve x^{2} at point (1,1).

- We need to know the slope m of x^{2} at point $P=(1,1)$.
- Take point $Q=\left(x, x^{2}\right)$ with $Q \neq P$ to compute the slope.

The slope from P to Q is:

$$
m_{P Q}=\frac{Q_{y}-P_{y}}{Q_{x}-P_{x}}=\frac{x^{2}-1}{x-1}
$$

x	2	1.5		
$m_{P Q}$	3	2.5		

The Tangent: Example

Find the equation for the tangent to the curve x^{2} at point (1,1).

- We need to know the slope m of x^{2} at point $P=(1,1)$.
- Take point $Q=\left(x, x^{2}\right)$ with $Q \neq P$ to compute the slope.

The slope from P to Q is:

$$
m_{P Q}=\frac{Q_{y}-P_{y}}{Q_{x}-P_{x}}=\frac{x^{2}-1}{x-1}
$$

x	2	1.5	1.1	
$m_{P Q}$	3	2.5	2.1	

The Tangent: Example

Find the equation for the tangent to the curve x^{2} at point (1,1).

- We need to know the slope m of x^{2} at point $P=(1,1)$.
- Take point $Q=\left(x, x^{2}\right)$ with $Q \neq P$ to compute the slope.

The slope from P to Q is:

$$
m_{P Q}=\frac{Q_{y}-P_{y}}{Q_{x}-P_{x}}=\frac{x^{2}-1}{x-1}
$$

x	2	1.5	1.1	1.01
$m_{P Q}$	3	2.5	2.1	2.01

The closer Q to P, the closer $m_{P Q}$ gets to 2 .

The Tangent: Example

Find the equation for the tangent to the curve x^{2} at point $(1,1)$.

- We need to know the slope m of x^{2} at point $P=(1,1)$.
- Take point $Q=\left(x, x^{2}\right)$ with $Q \neq P$ to compute the slope.

The slope from P to Q is:

$$
m_{P Q}=\frac{Q_{y}-P_{y}}{Q_{x}-P_{x}}=\frac{x^{2}-1}{x-1}
$$

x	2	1.5	1.1	1.01
$m_{P Q}$	3	2.5	2.1	2.01

The closer Q to P, the closer $m_{P Q}$ gets to 2. Suggests that in P the slope $m=2$.

Thus the tangent is $y-1=2(x-1)$ or $y=2 x-1$.

The Limit of a Function

We investigate the function $x^{2}-x+1$ for values of x near 2 .

from below $(x<2)$:

x	$f(x)$
1	1
1.5	1.75
1.9	2.71
1.99	2.9701
1.999	2.9970

from above $(x>2)$:

x	$f(x)$
2.5	4.75
2.2	3.64
2.1	3.31
2.01	3.0301
2.001	3.0030

From the tables we see: as x approaches 2, $f(x)$ approaches 3.

$$
\lim _{x \rightarrow 2}\left(x^{2}-x+1\right)=3
$$

Limit: Definition

Suppose $f(x)$ is defined close to a (but not necessarily a itself). We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

spoken: "the limit of $f(x)$, as x approaches a, is L "
if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a but not equal to a.

The values of $f(x)$ get closer to L as x gets closer to a.
Alternative notation for $\lim _{x \rightarrow a}=L$:

$$
f(x) \rightarrow L \quad \text { as } \quad x \rightarrow a
$$

Limit: Continued

$\lim _{x \rightarrow a} f(x)=L$ if we can make the values of $f(x)$ arbitrarily close to L by taking x sufficiently close to a but not equal to a.

Note that we never consider $f(x)$ for $x=a$. The value of $f(a)$ does not matter. In fact, $f(x)$ need not be defined for $x=a$.

$f(a)=L$

$f(a) \neq L$

$f(a)$ undefined

In each of these cases we have $\lim _{x \rightarrow a} f(x)=L$!

Limit: Examples

Guess the value of

$$
\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}
$$

The function is not defined at $x=1$. (does not matter for the limit)
from below: from above:

x	$f(x)$	x	$f(x)$
0.5	0.66667	1.5	0.40000
0.9	0.52632	1.1	0.47619
0.99	0.50251	1.01	0.49751
0.999	0.50025	1.001	0.49975

From these values we guess that $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}=0.5$.

Limit: Examples

Guess the value of $\lim _{x \rightarrow 1} g(x)$ where

$$
g(x)= \begin{cases}\frac{x-1}{x^{2}-1} & \text { for } x \neq 1 \\ 2 & \text { for } x=1\end{cases}
$$

As on the previous slide $\lim _{x \rightarrow 1} g(x)=0.5$. (recall that $g(1)$ does not matter for $\lim _{x \rightarrow 1} g(x)$).

Limit: Examples

Guess the value of

$$
\lim _{x \rightarrow 0} \sin \frac{\pi}{x}
$$

x	$f(x)$
± 1	0
± 0.1	0
± 0.01	0
± 0.001	0

This suggest that the limit is 0 .
However, this is wrong:

$\sin \left(\frac{\pi}{x}\right)=0$ for arbitrarily small x, but also $\sin \left(\frac{\pi}{x}\right)=1$ for arbitrarily small x; e.g. $x=\frac{1}{2.5}, \frac{1}{4.5}, \frac{1}{6.5}, \ldots$ Hence: The limit $\lim _{x \rightarrow 0} \sin \frac{\pi}{x}$ does not exist.

Limit: Caution with Calculators

Guess the value of

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+9}-3}{x^{2}}
$$

x	$f(x)$
± 1.0	0.16228
± 0.5	0.16553
± 0.1	0.16662
± 0.01	0.16667
± 0.0001	0.20000
± 0.00001	0.00000
± 0.000001	0.00000

Is the limit 0? NO
Problem: calculator gives wrong values!
For small x it rounds $\sqrt{x^{2}+9}-3$ to 0 .

The correct limit is $\frac{1}{6}=0.166666 \ldots$

Limit: Examples

Guess the value of

$$
\lim _{x \rightarrow 0}\left(x^{3}+\frac{\cos 5 x}{10000}\right)
$$

Looks like the limit is 0 . But if we continue:

x	$f(x)$
0.005	0.00010009
0.001	0.00010000

We see actually that:
The value of the limit is 0.0001 .

Limits and Calculators

Determining limits via calculators is a bad idea!
We have seen several sources of errors:

- we might stop too early, and draw wrong conclusions
- wrong results due to rounding in the calculator

We need to compute limits precisely using limits laws...

Limit: Examples

The Heaviside function H is defined by

$$
H(t)= \begin{cases}0 & \text { if } t<0 \\ 1 & \text { if } t \geq 0\end{cases}
$$

What is $\lim _{t \rightarrow 0} H(t)$?

- As t approaches 0 from the left, $H(t)$ approaches 0 .
- As t approaches 0 from the right, $H(t)$ approaches 1 .

Thus there is not single number that $H(t)$ approaches.
The limit $\lim _{t \rightarrow 0} H(t)$ does not exist.

One-Sided Limits (From the Left)

The function H is defined by

$$
H(t)= \begin{cases}0 & \text { if } t<0 \\ 1 & \text { if } t \geq 0\end{cases}
$$

$H(t)$ approaches 0 as t approaches 0 from the left. We write:

$$
\lim _{t \rightarrow 0^{-}} H(t)=0
$$

The symbol $t \rightarrow 0^{-}$indicates that we consider only values $t<0$.
We write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

and say
"the left-hand limit of $f(x)$, as x approaches a, is L ", or "the limit of $f(x)$, as x approaches a from the left, is L " if we can make the values $f(x)$ arbitrarily close to L by taking x sufficiently close to a and $x<a$.

One-Sided Limits (From the Right)

The function H is defined by

$$
H(t)= \begin{cases}0 & \text { if } t<0 \\ 1 & \text { if } t \geq 0\end{cases}
$$

$H(t)$ approaches 1 as t approaches 0 from the right. We write:

$$
\lim _{t \rightarrow 0^{+}} H(t)=1
$$

The symbol $t \rightarrow 0^{+}$indicates that we consider only values $t>0$.
We write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

and say
"the right-hand limit of $f(x)$, as x approaches a, is L ", or "the limit of $f(x)$, as x approaches a from the right, is L " if we can make the values $f(x)$ arbitrarily close to L by taking x sufficiently close to a and $x>a$.

One-Sided Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $\lim _{x \rightarrow 2^{-}}=$? a 0 b 1 c 2 d 3 e does not exist

One-Sided Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $\lim _{x \rightarrow 2^{-}}=2$
- $\lim _{x \rightarrow 2^{+}}=$? a 0 b 1 c 2 d 3 e does not exist

One-Sided Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $\lim _{x \rightarrow 2^{-}}=2$
- $\lim _{x \rightarrow 2^{+}}=1$
- $\lim _{x \rightarrow 2}=$?
a 0
b 1
C 2
d 3
e does not exist

One-Sided Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $\lim _{x \rightarrow 2^{-}}=2$
- $\lim _{x \rightarrow 2^{+}}=1$
- $\lim _{x \rightarrow 2}$ does not exist
- $\lim _{x \rightarrow 4^{-}}=$? a 0 b 1 c 2 d 3 e does not exist

One-Sided Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $\lim _{x \rightarrow 2^{-}}=2$
- $\lim _{x \rightarrow 2^{+}}=1$
- $\lim _{x \rightarrow 2}$ does not exist
- $\lim _{x \rightarrow 4^{-}}=1$
- $\lim _{x \rightarrow 4^{+}}=$? a 0 b 1 c 2 d 3 e does not exist

One-Sided Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $\lim _{x \rightarrow 2^{-}}=2$
- $\lim _{x \rightarrow 2^{+}}=1$
- $\lim _{x \rightarrow 2}$ does not exist
- $\lim _{x \rightarrow 4^{-}}=1$
- $\lim _{x \rightarrow 4^{+}}=1$
- $\lim _{x \rightarrow 4}=$? a 0 b 1 c 2 d 3 e does not exist

One-Sided Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $\lim _{x \rightarrow 2^{-}}=2$
- $\lim _{x \rightarrow 2^{+}}=1$
- $\lim _{x \rightarrow 2}$ does not exist
- $\lim _{x \rightarrow 4^{-}}=1$
- $\lim _{x \rightarrow 4^{+}}=1$
- $\lim _{x \rightarrow 4}=1$

Infinite Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $\lim _{x \rightarrow 3^{-}} g(x)=3$
- $\lim _{x \rightarrow 3^{+}} g(x)=3$
- $\lim _{x \rightarrow 3} g(x)=3$
- $\lim _{x \rightarrow 1} g(x)=1$
- $g(1)=$ undefined
- $g(0)=1$
- $\lim _{x \rightarrow 0^{-}} g(x)=1$
- $\lim _{x \rightarrow 0^{+}} g(x)=-1$
- $\lim _{x \rightarrow 0} g(x)=$ does not exist
- $\lim _{x \rightarrow 5^{-}} g(x)=$ does not exist
- $\lim _{x \rightarrow 5^{+}} g(x)=2$
- $\lim _{x \rightarrow 5} g(x)=$ does not exist

Infinite Limits

We consider the function $\frac{1}{x^{2}}$. What is $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$?

As x becomes close to $0, \frac{1}{x^{2}}$ becomes very large. The values do not approach a number, so $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ does not exist!
Nevertheless, in this case, we write

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

to indicate that the values become larger and larger.

Infinite Limits: Definition

Suppose $f(x)$ is defined close to a (but not necessarily a itself). Then we write

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

spoken: "the limit of $f(x)$, as x approaches a, is infinity"
if we can make the values of $f(x)$ arbitrarily large by taking x to be sufficiently close to a (but not equal to a).

Infinite Limits: Definition

Suppose $f(x)$ is defined close to a (but not necessarily a itself). Then we write

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

spoken: "the limit of $f(x)$, as x approaches a, is negative infinity"
if we can make the values of $f(x)$ arbitrarily large negative by taking x to be sufficiently close to a (but not equal to a).

Infinite One-Sided Limits

Like wise we define the one-sided infinite limits:
(a) $\lim _{x \rightarrow a^{-}} f(x)=\infty$
(b) $\lim _{x \rightarrow a^{-}} f(x)=-\infty$
(c) $\lim _{x \rightarrow a^{+}} f(x)=\infty$
(d) $\lim _{x \rightarrow a^{+}} f(x)=-\infty$
(a)

(b)

(c)

(d)

Note that ∞ and $-\infty$ are not considered numbers.
If $\lim _{x \rightarrow a} f(x)=\infty$ then $\lim _{x \rightarrow a} f(x)$ does not exist.
It indicates a certain way in which the limit does not exist.

Infinite Limits: Examples

Find

$$
\lim _{x \rightarrow 3^{-}} \frac{2 x}{x-3} \quad \text { and } \quad \lim _{x \rightarrow 3^{+}} \frac{2 x}{x-3}
$$

$$
\lim _{x \rightarrow 3^{-}} \frac{2 x}{x-3}=? \quad \text { a } 0 \quad \text { b } 1 \quad \text { c } \infty \quad \text { d }-\infty
$$

Infinite Limits: Examples

Find

$$
\lim _{x \rightarrow 3^{-}} \frac{2 x}{x-3} \quad \text { and } \quad \lim _{x \rightarrow 3^{+}} \frac{2 x}{x-3}
$$

$\lim _{x \rightarrow 3^{-}} \frac{2 x}{x-3}=-\infty$
$\lim _{x \rightarrow 3^{+}} \frac{2 x}{x-3}=$? a 0 b 1 c ∞ d $-\infty$

Infinite Limits: Examples

Find

$$
\lim _{x \rightarrow 3^{-}} \frac{2 x}{x-3} \quad \text { and } \quad \lim _{x \rightarrow 3^{+}} \frac{2 x}{x-3}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} \frac{2 x}{x-3}=-\infty \\
& \lim _{x \rightarrow 3^{+}} \frac{2 x}{x-3}=\infty
\end{aligned}
$$

If x is close to 3 and $x<3$ (approaching from the left), then:

- $2 x$ is close to 6 ,
- $x-3$ is a small negative number,
- and thus $2 x /(x-3)$ is a large negative number.

Hence $\lim _{x \rightarrow 3^{-}} \frac{2 x}{x-3}=-\infty$.
Similarly for x close to 3 and $x>3$, but now $x-3$ is positive.

Infinite Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $f(2)=$? a 0 b 1 c 2 d undefined

Infinite Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $f(2)=1$
- $\lim _{x \rightarrow 2^{-}}=$? a 1 b 2 c $\infty \quad$ d $-\infty$ e does not exist

Infinite Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $f(2)=1$
- $\lim _{x \rightarrow 2^{-}}=2$
- $\lim _{x \rightarrow 2^{+}}=$?
a 1
b 2
C ∞
d $-\infty$
e does not exist

Infinite Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $f(2)=1$
- $\lim _{x \rightarrow 2^{-}}=2$
- $\lim _{x \rightarrow 2^{+}}=-\infty$ (special case of 'does not exist')
- $\lim _{x \rightarrow 2}=$? a 1 b $\infty \quad$ c $-\infty \quad$ d does not exist

Infinite Limits: Example

Consider the following graph of function $g(x)$:

Use the graph to estimate the following values:

- $f(2)=1$
- $\lim _{x \rightarrow 2^{-}}=2$
- $\lim _{x \rightarrow 2^{+}}=-\infty$ (special case of 'does not exist')
- $\lim _{x \rightarrow 2}$ does not exist

Infinite Limits: Vertical Asymptotes

The line $x=a$ is a vertical asymptote of a function f if at least one of the following statements is true:

$$
\begin{array}{lll}
\lim _{x \rightarrow a} f(x)=\infty & \lim _{x \rightarrow a^{-}} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty \\
\lim _{x \rightarrow a} f(x)=-\infty & \lim _{x \rightarrow a^{-}} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{array}
$$

Infinite Limits: Vertical Asymptotes

What are the vertical asymptotes of

$$
f(x)=\frac{2 x}{x-3} ?
$$

The function has the vertical asymptote $x=3$:

$$
\lim _{x \rightarrow 3^{-}} f(x)=-\infty
$$

Infinite Limits: Vertical Asymptotes

What are the vertical asymptotes of

$$
f(x)=\frac{x^{2}+2 x-3}{x-1} ?
$$

The function has no vertical asymptotes:

$$
\frac{x^{2}+2 x-3}{x-1}=(x+3) \text { for } x \neq 1
$$

Infinite Limits: Vertical Asymptotes

What are the vertical asymptotes of

$$
f(x)=\log _{5} x ?
$$

The function has the vertical asymptote $x=0$:

$$
\lim _{x \rightarrow 0^{+}} \log _{5} x=-\infty
$$

