Precise Definition of Limits

Recall the definition of limits:
Suppose $f(x)$ is defined close to a (but not necessarily a itself). We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

spoken: "the limit of $f(x)$, as x approaches a, is L "
if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a but not equal to a.

The intuitive definition of limits is for some purposes too vague:

- What means 'make $f(x)$ arbitrarily close to L ' ?
- What means 'taking x sufficiently close to a' ?

Precise Definition of Limits: Example

$$
f(x)= \begin{cases}2 x-1 & \text { for } x \neq 3 \\ 6 & \text { for } x=3\end{cases}
$$

Intuitively, when x is close to 3 but $x \neq 3$ then $f(x)$ is close to 5 .
How close to 3 does x need to be for $f(x)$ to differ from 5 less than 0.1?

- the distance of x to 3 is $|x-3|$
- the distance of $f(x)$ to 5 is $|f(x)-5|$

To answer the question we need to find $\delta>0$ such that

$$
|f(x)-5|<0.1 \quad \text { whenever } \quad 0<|x-3|<\delta
$$

For $x \neq 3$ we have

$$
|f(x)-5|=|(2 x-1)-5|=|2 x-6|=2|x-3|<0.1
$$

Thus $|f(x)-5|<0.1$ whenever $0<|x-3|<0.05$; i.e. $\delta=0.05$.

Precise Definition of Limits: Example

$$
f(x)= \begin{cases}2 x-1 & \text { for } x \neq 3 \\ 6 & \text { for } x=3\end{cases}
$$

We have derived

$$
|f(x)-5|<0.1 \quad \text { whenever } \quad 0<|x-3|<0.05
$$

In words this means:
If x is within a distance of 0.05 from 3 (and $x \neq 3$) then $f(x)$ is within a distance of 0.1 from 5 .

Precise Definition of Limits: Example

$$
f(x)= \begin{cases}2 x-1 & \text { for } x \neq 3 \\ 6 & \text { for } x=3\end{cases}
$$

Similarly, we find

$$
\begin{array}{rll}
|f(x)-5|<0.1 & \text { whenever } & 0<|x-3|<0.05 \\
|f(x)-5|<0.01 & \text { whenever } & 0<|x-3|<0.005 \\
|f(x)-5|<0.001 & \text { whenever } & 0<|x-3|<0.0005
\end{array}
$$

The distances $0.1,0.01, \ldots$ are called error tolerance.

Precise Definition of Limits: Example

$$
f(x)= \begin{cases}2 x-1 & \text { for } x \neq 3 \\ 6 & \text { for } x=3\end{cases}
$$

Similarly, we find

$$
\begin{array}{rll}
|f(x)-5|<0.1 & \text { whenever } & 0<|x-3|<\delta(0.1) \\
|f(x)-5|<0.01 & \text { whenever } & 0<|x-3|<0.005 \\
|f(x)-5|<0.001 & \text { whenever } & 0<|x-3|<0.0005
\end{array}
$$

The distances $0.1,0.01, \ldots$ are called error tolerance.
We have: $\delta(0.1)=0.05$

Precise Definition of Limits: Example

$$
f(x)= \begin{cases}2 x-1 & \text { for } x \neq 3 \\ 6 & \text { for } x=3\end{cases}
$$

Similarly, we find

$$
\begin{array}{rll}
|f(x)-5|<0.1 & \text { whenever } & 0<|x-3|<\delta(0.1) \\
|f(x)-5|<0.01 & \text { whenever } & 0<|x-3|<\delta(0.01) \\
|f(x)-5|<0.001 & \text { whenever } & 0<|x-3|<0.0005
\end{array}
$$

The distances $0.1,0.01, \ldots$ are called error tolerance.
We have: $\delta(0.1)=0.05, \delta(0.01)=0.005$

Precise Definition of Limits: Example

$$
f(x)= \begin{cases}2 x-1 & \text { for } x \neq 3 \\ 6 & \text { for } x=3\end{cases}
$$

Similarly, we find

$$
\begin{array}{rll}
|f(x)-5|<0.1 & \text { whenever } & 0<|x-3|<\delta(0.1) \\
|f(x)-5|<0.01 & \text { whenever } & 0<|x-3|<\delta(0.01) \\
|f(x)-5|<0.001 & \text { whenever } & 0<|x-3|<\delta(0.001)
\end{array}
$$

The distances $0.1,0.01, \ldots$ are called error tolerance.
We have: $\delta(0.1)=0.05, \delta(0.01)=0.005, \delta(0.001)=0.0005$
Thus $\delta(\epsilon)$ is a function of the error tolerance ϵ !
We need to define $\delta(\epsilon)$ for arbitrary error tolerance $\epsilon>0$:

$$
|f(x)-5|<\epsilon \quad \text { whenever } \quad 0<|x-3|<\delta(\epsilon)
$$

We want $|f(x)-5|=2|x-3|<\epsilon$. We define $\delta(\epsilon)=\epsilon / 2$.

Precise Definition of Limits: Example

$$
f(x)= \begin{cases}2 x-1 & \text { for } x \neq 3 \\ 6 & \text { for } x=3\end{cases}
$$

We define $\delta(\epsilon)=\epsilon / 2$. Then the following holds

$$
\text { if } 0<|x-3|<\delta(\epsilon) \quad \text { then } \quad|f(x)-5|<\epsilon
$$

In words this means:
If x is within a distance of $\epsilon / 2$ from 3 (and $x \neq 3$) then $f(x)$ is within a distance of ϵ from 5 .

We can make ϵ arbitrarily small (but greater 0), and thereby make $f(x)$ arbitrarily close 5.

This motivates the precise definition of limits. . .

Precise Definition of Limits

Let f be a function that is defined on some open interval that contains a, except possibly on a itself.

$$
\lim _{x \rightarrow a} f(x)=L
$$

if there exists a function $\delta:(0, \infty) \rightarrow(0, \infty)$ s.t. for every $\epsilon>0$:

$$
\text { if } \quad 0<|a-x|<\delta(\epsilon) \quad \text { then } \quad|f(x)-L|<\epsilon
$$

In words: No matter what $\epsilon>0$ we choose, if the distance of x to a is smaller than $\delta(\epsilon)$ (and $x \neq a$) then the distance of $f(x)$ to L is smaller than ϵ.

We can make f arbitrarily close to L by taking ϵ arbitrarily small.
Then x is sufficiently close to a if the distance is $<\delta(\epsilon)$.

Precise Definition of Limits

Let f be a function that is defined on some open interval that contains a, except possibly on a itself.

$$
\lim _{x \rightarrow a} f(x)=L
$$

if there exists a function $\delta:(0, \infty) \rightarrow(0, \infty)$ s.t. for every $\epsilon>0$:

$$
\text { if } \quad 0<|a-x|<\delta(\epsilon) \quad \text { then } \quad|f(x)-L|<\epsilon
$$

The definition is equivalent to the one in the book:

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every $\epsilon>0$ there exists a number $\delta>0$ such that

$$
\text { if } \quad 0<|a-x|<\delta \quad \text { then } \quad|f(x)-L|<\epsilon
$$

Precise Definition of Limits

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every $\epsilon>0$ there exists a number $\delta>0$ such that

$$
\text { if } \quad 0<|a-x|<\delta \quad \text { then } \quad|f(x)-L|<\epsilon
$$

Geometric interpretation:
For any small interval ($L-\epsilon, L+\epsilon$) around L, we can find an interval $(a-\delta, a+\delta)$ around a such that f maps all points in $(a-\delta, a+\delta)$ into $(L-\epsilon, L+\epsilon)$.

Precise Definition of Limits

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every $\epsilon>0$ there exists a number $\delta>0$ such that

$$
\text { if } \quad 0<|a-x|<\delta \quad \text { then } \quad|f(x)-L|<\epsilon
$$

Alternative geometric interpretation:

For every interval I_{L} around L, find interval I_{a} around a
such that
if we restrict the domain of f to I_{a}, then the curve lies in I_{L}.

Precise Definition of Limits - Example

Proof that

$$
\lim _{x \rightarrow 3}(4 x-5)=7
$$

Let $\epsilon>0$ be arbitrary (the error tolerance).
We need to find δ such that

$$
\text { if } \quad 0<|x-3|<\delta \quad \text { then } \quad|(4 x-5)-7|<\epsilon
$$

We have

$$
\begin{aligned}
|(4 x-5)-7|<\epsilon & \Longleftrightarrow|4 x-12|<\epsilon \\
& \Longleftrightarrow-\epsilon<4 x-12<\epsilon \\
& \Longleftrightarrow-\frac{\epsilon}{4}<x-3<\frac{\epsilon}{4} \\
& \Longleftrightarrow|x-3|<\frac{\epsilon}{4}
\end{aligned}
$$

Thus $\delta=\frac{\epsilon}{4}$. If $\quad 0<|x-3|<\frac{\epsilon}{4} \quad$ then $\quad|(4 x-5)-7|<\epsilon$.

Precise Definition of Limits - Example

If the next exam will be insanely hard, then many students will fail.

The words if and then are hugely important!

In exams many students write:

$$
\begin{aligned}
& 0<|x-3|<\frac{\epsilon}{4} \\
& |(4 x-5)-7|<\epsilon
\end{aligned}
$$

which is wrong.
Correct is:

$$
\begin{aligned}
& \text { If } 0<|x-3|<\frac{\epsilon}{4} \\
& \text { then }|(4 x-5)-7|<\epsilon
\end{aligned}
$$

Precise Definition of Limits - Example

Find $\delta>0$ such that

$$
\text { if } 0<|x-1|<\delta \text { then }\left|\left(x^{2}-5 x+6\right)-2\right|<0.2
$$

Note that δ is a bound on the distance of x from 1 .
Lets say $x=1+\delta$. Then

$$
\begin{aligned}
\left(x^{2}-5 x+6\right)-2 & =(1+\delta)^{2}-5(1+\delta)+4 \\
& =\left(1+2 \delta+\delta^{2}\right)-(5+5 \delta)+4 \\
& =\delta^{2}-3 \delta
\end{aligned}
$$

Thus

$$
\left|\left(x^{2}-5 x+6\right)-2\right|<0.2 \quad \Longleftrightarrow \quad\left|\delta^{2}-3 \delta\right|<0.2
$$

Assume that $|\delta|<1$ (we can make it as small as we want), then:

$$
\left|\delta^{2}-3 \delta\right| \leq\left|\delta^{2}\right|+|3 \delta| \leq|\delta|+|3 \delta| \leq 4|\delta|
$$

Thus: if $4|\delta|<0.2$ then $\left|\left(x^{2}-5 x+6\right)-2\right|<0.2$.
Hence $\delta=0.04$ is a possible choice.

Precise Definition of Limits: Example

Let $\lim _{x \rightarrow a} f(x)=L_{f}$ and $\lim _{x \rightarrow a} g(x)=L_{g}$. Prove the sum law:

$$
\lim _{x \rightarrow a}[f(x)+g(x)]=L_{f}+L_{g}
$$

Let $\epsilon>0$ be arbitrary, we need to find δ such that

$$
\text { if } 0<|x-a|<\delta \text { then }\left|(f(x)+g(x))-\left(L_{f}+L_{g}\right)\right|<\epsilon
$$

Note that $(f(x)+g(x))-\left(L_{f}+L_{g}\right)=\left(f(x)-L_{f}\right)+\left(g(x)-L_{g}\right)$.
We know that there exists δ_{f} such that:

$$
\text { if } 0<|x-a|<\delta_{f} \text { then }\left|f(x)-L_{f}\right|<\epsilon / 2
$$

and there exists δ_{g} such that:

$$
\text { if } 0<|x-a|<\delta_{g} \text { then }\left|g(x)-L_{g}\right|<\epsilon / 2
$$

We take $\delta=\min \left(\delta_{f}, \delta_{g}\right)$. If $0<|x-a|<\delta$ then

$$
\left|f(x)-L_{f}\right|<\epsilon / 2 \quad \text { and } \quad\left|g(x)-L_{g}\right|<\epsilon / 2
$$

and hence $\left|\left(f(x)-L_{f}\right)+\left(g(x)-L_{g}\right)\right|<\epsilon$.

Precise Definition of One-Sided Limits

Left-limit

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if for every $\epsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } a-\delta<x<a \text { then }|f(x)-L|<\epsilon
$$

Right-limit

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if for every $\epsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } a<x<a+\delta \text { then }|f(x)-L|<\epsilon
$$

Precise Definition of One-Sided Limits - Example

Right-limit

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if for every $\epsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } \quad a<x<a+\delta \quad \text { then } \quad|f(x)-L|<\epsilon
$$

Proof that $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$.
Let $\epsilon>0$. We look for $\delta>0$ such that

$$
\text { if } 0<x<0+\delta \quad \text { then } \quad|\sqrt{x}-0|<\epsilon
$$

We have (since $0<x$)

$$
|\sqrt{x}-0|=|\sqrt{x}|=\sqrt{x}<\epsilon \quad \Longrightarrow \quad x<\epsilon^{2}
$$

Thus $\delta=\epsilon^{2}$. If $0<x<0+\epsilon^{2} \quad$ then $\quad|\sqrt{x}-0|<\epsilon$.

Precise Definition of Infinite Limits

Infinite Limit

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

if for every positive number M there is $\delta>0$ such that

$$
\text { if } 0<|a-x|<\delta \text { then } f(x)>M
$$

Negative Infinite Limit

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

if for every negative number M there is $\delta>0$ such that

$$
\text { if } 0<|a-x|<\delta \text { then } f(x)<M
$$

Precise Definition of Infinite Limits - Example

Infinite Limit

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

if for every positive number M there is $\delta>0$ such that

$$
\text { if } 0<|a-x|<\delta \text { then } f(x)>M
$$

Proof that $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$.
Let M be a positive number. We look for δ such that

$$
\text { if } 0<|0-x|<\delta \text { then } \frac{1}{x^{2}}>M
$$

We have:
$\frac{1}{x^{2}}>M \Longleftrightarrow 1>M \cdot x^{2} \Longleftrightarrow \frac{1}{M}>x^{2} \Longleftrightarrow \sqrt{\frac{1}{M}}>|x|$
Thus $\delta=\sqrt{1 / M}$. If $0<|0-x|<\sqrt{1 / M}$ then $\frac{1}{x^{2}}>M$.

