Recall the definition of limits:

Suppose f(x) is defined close to *a* (but not necessarily *a* itself). We write

$$\lim_{x\to a} f(x) = L$$

spoken: "the limit of f(x), as x approaches a, is L"

if we can make the values of f(x) arbitrarily close to *L* by taking *x* to be sufficiently close to *a* but not equal to *a*.

The intuitive definition of limits is for some purposes too vague:

- What means 'make f(x) arbitrarily close to L'?
- What means 'taking x sufficiently close to a' ?

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3\\ 6 & \text{for } x = 3 \end{cases}$$

Intuitively, when x is close to 3 but $x \neq 3$ then f(x) is close to 5.

How close to 3 does x need to be for f(x) to differ from 5 less than 0.1?

- the distance of x to 3 is |x 3|
- the distance of f(x) to 5 is |f(x) 5|

To answer the question we need to find $\delta > 0$ such that

|f(x) - 5| < 0.1 whenever $0 < |x - 3| < \delta$

For $x \neq 3$ we have

$$|f(x) - 5| = |(2x - 1) - 5| = |2x - 6| = 2|x - 3| < 0.1$$

Thus |f(x) - 5| < 0.1 whenever 0 < |x - 3| < 0.05; i.e. $\delta = 0.05$.

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3\\ 6 & \text{for } x = 3 \end{cases}$$

We have derived

|f(x) - 5| < 0.1 whenever 0 < |x - 3| < 0.05

In words this means:

If x is within a distance of 0.05 from 3 (and $x \neq 3$) then f(x) is within a distance of 0.1 from 5.

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3\\ 6 & \text{for } x = 3 \end{cases}$$

Similarly, we find

$$\begin{split} |f(x)-5| < 0.1 & \text{whenever} \quad 0 < |x-3| < 0.05 \\ |f(x)-5| < 0.01 & \text{whenever} \quad 0 < |x-3| < 0.005 \\ |f(x)-5| < 0.001 & \text{whenever} \quad 0 < |x-3| < 0.0005 \end{split}$$

The distances 0.1, 0.01, ... are called error tolerance.

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3\\ 6 & \text{for } x = 3 \end{cases}$$

Similarly, we find

$$\begin{split} |f(x)-5| < 0.1 & \text{whenever} \quad 0 < |x-3| < \delta(0.1) \\ |f(x)-5| < 0.01 & \text{whenever} \quad 0 < |x-3| < 0.005 \\ |f(x)-5| < 0.001 & \text{whenever} \quad 0 < |x-3| < 0.0005 \end{split}$$

The distances 0.1, 0.01, ... are called **error tolerance**. We have: $\delta(0.1) = 0.05$

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3\\ 6 & \text{for } x = 3 \end{cases}$$

Similarly, we find

$$\begin{split} |f(x)-5| < 0.1 & \text{whenever} \quad 0 < |x-3| < \delta(0.1) \\ |f(x)-5| < 0.01 & \text{whenever} \quad 0 < |x-3| < \delta(0.01) \\ |f(x)-5| < 0.001 & \text{whenever} \quad 0 < |x-3| < 0.0005 \end{split}$$

The distances 0.1, 0.01, ... are called error tolerance.

We have: $\delta(0.1) = 0.05$, $\delta(0.01) = 0.005$

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3\\ 6 & \text{for } x = 3 \end{cases}$$

Similarly, we find

$$\begin{split} |f(x)-5| &< 0.1 & \text{whenever} \quad 0 < |x-3| < \delta(0.1) \\ |f(x)-5| < 0.01 & \text{whenever} \quad 0 < |x-3| < \delta(0.01) \\ |f(x)-5| < 0.001 & \text{whenever} \quad 0 < |x-3| < \delta(0.001) \end{split}$$

The distances 0.1, 0.01, ... are called **error tolerance**.

We have: $\delta(0.1) = 0.05$, $\delta(0.01) = 0.005$, $\delta(0.001) = 0.0005$ Thus $\delta(\epsilon)$ is a function of the error tolerance ϵ !

We need to define $\delta(\varepsilon)$ for arbitrary error tolerance $\varepsilon > 0$:

 $|f(x) - 5| < \epsilon$ whenever $0 < |x - 3| < \delta(\epsilon)$

We want $|f(x) - 5| = 2|x - 3| < \epsilon$. We define $\delta(\epsilon) = \epsilon/2$.

$$f(x) = \begin{cases} 2x - 1 & \text{for } x \neq 3\\ 6 & \text{for } x = 3 \end{cases}$$

We define $\delta(\epsilon) = \epsilon/2$. Then the following holds

 $\text{if} \quad 0 < |x - 3| < \delta(\varepsilon) \quad \text{ then } \quad |f(x) - 5| < \varepsilon \\$

In words this means:

If x is within a distance of $\epsilon/2$ from 3 (and $x \neq 3$) then f(x) is within a distance of ϵ from 5.

We can make ϵ arbitrarily small (but greater 0), and thereby make f(x) arbitrarily close 5.

This motivates the precise definition of limits...

Let *f* be a function that is defined on some open interval that contains *a*, except possibly on *a* itself.

 $\lim_{x\to a} f(x) = L$

if there exists a function $\delta:(0,\infty)\to(0,\infty)$ s.t. for every $\varepsilon>$ 0:

 $\text{if } \quad 0 < |a - x| < \delta(\varepsilon) \quad \text{ then } \quad |f(x) - L| < \varepsilon \\$

In words: No matter what $\epsilon > 0$ we choose, if the distance of x to a is smaller than $\delta(\epsilon)$ (and $x \neq a$) then the distance of f(x) to L is smaller than ϵ .

We can make *f* arbitrarily close to *L* by taking ϵ arbitrarily small. Then *x* is sufficiently close to *a* if the distance is $< \delta(\epsilon)$.

Let *f* be a function that is defined on some open interval that contains *a*, except possibly on *a* itself.

$$\lim_{x\to a} f(x) = L$$

if there exists a function $\delta:(0,\infty)\to(0,\infty)$ s.t. for every $\varepsilon>0$:

 $\text{if} \quad 0 < |a - x| < \delta(\varepsilon) \quad \text{ then } \quad |f(x) - L| < \varepsilon \\$

The definition is equivalent to the one in the book:

$$\lim_{x\to a} f(x) = L$$

if for every $\epsilon > 0$ there exists a number $\delta > 0$ such that

if $0 < |a - x| < \delta$ then $|f(x) - L| < \epsilon$

$$\lim_{x\to a} f(x) = L$$

if for every $\varepsilon > 0$ there exists a number $\delta > 0$ such that

if $0 < |a - x| < \delta$ then $|f(x) - L| < \epsilon$

Geometric interpretation:

For any small interval $(L - \epsilon, L + \epsilon)$ around *L*, we can find an interval $(a - \delta, a + \delta)$ around *a* such that *f* maps all points in $(a - \delta, a + \delta)$ into $(L - \epsilon, L + \epsilon)$.

$$\lim_{x\to a} f(x) = L$$

if for every $\varepsilon > 0$ there exists a number $\delta > 0$ such that

if $0 < |a - x| < \delta$ then $|f(x) - L| < \epsilon$

Alternative geometric interpretation:

For every interval I_L around L,

find interval I_a around a

such that

if we restrict the domain of *f* to I_a , then the curve lies in I_L .

Proof that

$$\lim_{x\to 3}(4x-5)=7$$

Let $\varepsilon >$ 0 be arbitrary (the error tolerance).

We need to find δ such that

if
$$0 < |x-3| < \delta$$
 then $|(4x-5)-7| < \epsilon$

We have

$$\begin{split} |(4x-5)-7| < \varepsilon & \iff \quad |4x-12| < \varepsilon \\ \Leftrightarrow & -\varepsilon < 4x - 12 < \varepsilon \\ \Leftrightarrow & -\frac{\varepsilon}{4} < x - 3 < \frac{\varepsilon}{4} \\ \Leftrightarrow & |x-3| < \frac{\varepsilon}{4} \\ \end{split}$$
hus $\delta = \frac{\varepsilon}{4}$. If $0 < |x-3| < \frac{\varepsilon}{4}$ then $|(4x-5)-7| < \varepsilon$.

If the next exam will be insanely hard, then many students will fail.

The words if and then are hugely important!

In exams many students write:

$$0 < |x - 3| < \frac{\epsilon}{4}$$

 $|(4x - 5) - 7| < \epsilon$

which is wrong.

Correct is:

$$\begin{aligned} & \text{If } 0 < |x - 3| < \frac{\epsilon}{4} \\ & \text{then } |(4x - 5) - 7| < \epsilon \end{aligned}$$

Find $\delta > 0$ such that

if
$$0 < |x - 1| < \delta$$
 then $|(x^2 - 5x + 6) - 2| < 0.2$

Note that δ is a bound on the distance of *x* from 1. Lets say $x = 1 + \delta$. Then

$$(x^{2} - 5x + 6) - 2 = (1 + \delta)^{2} - 5(1 + \delta) + 4$$
$$= (1 + 2\delta + \delta^{2}) - (5 + 5\delta) + 4$$
$$= \delta^{2} - 3\delta$$

Thus

$$|(x^2 - 5x + 6) - 2| < 0.2 \quad \iff \quad |\delta^2 - 3\delta| < 0.2$$

Assume that $|\delta| < 1$ (we can make it as small as we want), then:

$$|\delta^2 - 3\delta| \hspace{.1in} \leq \hspace{.1in} |\delta^2| + |3\delta| \hspace{.1in} \leq \hspace{.1in} |\delta| + |3\delta| \hspace{.1in} \leq \hspace{.1in} 4|\delta|$$

Thus: if $4|\delta| < 0.2$ then $|(x^2 - 5x + 6) - 2| < 0.2$. Hence $\delta = 0.04$ is a possible choice.

Let $\lim_{x\to a} f(x) = L_f$ and $\lim_{x\to a} g(x) = L_g$. Prove the sum law: $\lim_{x\to a} [f(x) + g(x)] = L_f + L_g$

Let $\varepsilon > 0$ be arbitrary, we need to find δ such that

 $\begin{array}{ll} \text{if} \quad 0<|x-a|<\delta \quad \text{then} \quad |(f(x)+g(x))-(L_f+L_g)|<\varepsilon\\ \text{Note that} \ (f(x)+g(x))-(L_f+L_g) \ = \ (f(x)-L_f)+(g(x)-L_g).\\ \text{We know that there exists} \ \delta_f \ \text{such that:} \end{array}$

 $\label{eq:relation} \begin{array}{ll} \text{if} \quad 0<|x-a|<\delta_f \quad \text{then} \quad |f(x)-L_f|<\varepsilon/2\\ \text{and there exists } \delta_g \text{ such that:} \end{array}$

$$\begin{split} & \text{if } \quad 0 < |x - a| < \delta_g \quad \text{then } \quad |g(x) - L_g| < \varepsilon/2 \\ & \text{We take } \delta = \min(\delta_f, \delta_g). \text{ If } 0 < |x - a| < \delta \text{ then} \\ & |f(x) - L_f| < \varepsilon/2 \quad \text{and} \quad |g(x) - L_g| < \varepsilon/2 \\ & \text{and hence } |(f(x) - L_f) + (g(x) - L_g)| < \varepsilon. \end{split}$$

Precise Definition of One-Sided Limits

Left-limit $\lim_{x \to a^{-}} f(x) = L$ if for every $\epsilon > 0$ there is a number $\delta > 0$ such that if $a - \delta < x < a$ then $|f(x) - L| < \epsilon$

Right-limit

$$\lim_{x\to a^+} f(x) = L$$

if for every $\varepsilon > 0$ there is a number $\delta > 0$ such that

if $a < x < a + \delta$ then $|f(x) - L| < \epsilon$

Precise Definition of One-Sided Limits - Example

Right-limit

$$\lim_{x\to a^+} f(x) = L$$

if for every $\varepsilon > 0$ there is a number $\delta > 0$ such that

if $a < x < a + \delta$ then $|f(x) - L| < \epsilon$

Proof that
$$\lim_{x\to 0^+} \sqrt{x} = 0$$
.

Let $\varepsilon > 0$. We look for $\delta > 0$ such that

if
$$0 < x < 0 + \delta$$
 then $|\sqrt{x} - 0| < \epsilon$

We have (since 0 < x)

$$|\sqrt{x} - 0| = |\sqrt{x}| = \sqrt{x} < \epsilon \implies x < \epsilon^2$$

 $\text{Thus } \delta = \varepsilon^2. \quad \text{If} \quad 0 < x < 0 + \varepsilon^2 \quad \text{then} \quad |\sqrt{x} - 0| < \varepsilon.$

Precise Definition of Infinite Limits

Infinite Limit $\lim_{x \to a} f(x) = \infty$ if for every positive number *M* there is $\delta > 0$ such that if $0 < |a - x| < \delta$ then f(x) > M

Negative Infinite Limit

$$\lim_{x\to a} f(x) = -\infty$$

if for every negative number *M* there is $\delta > 0$ such that

if $0 < |a - x| < \delta$ then f(x) < M

Precise Definition of Infinite Limits - Example

Infinite Limit

 $\lim_{x\to a} f(x) = \infty$

if for every positive number *M* there is $\delta > 0$ such that

if $0 < |a - x| < \delta$ then f(x) > M

Proof that $\lim_{x\to 0} \frac{1}{x^2} = \infty$.

Let *M* be a positive number. We look for δ such that

$$\text{if } \quad 0 < |0 - x| < \delta \quad \text{ then } \quad \frac{1}{x^2} > M$$

We have:

$$\frac{1}{x^2} > M \iff 1 > M \cdot x^2 \iff \frac{1}{M} > x^2 \iff \sqrt{\frac{1}{M}} > |x|$$

Thus $\delta = \sqrt{1/M}$. If $0 < |0 - x| < \sqrt{1/M}$ then $\frac{1}{x^2} > M$.