Calculating Limits using Limit Laws

We have seen that calculating limits with a calculator sometimes leads to incorrect results.

We will now see how to compute limits using Limit Laws:
Let c be a constant, and let $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Then

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{l \lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$

These laws also work for one-sided limits $\lim _{x \rightarrow a^{ \pm}}$.

Calculating Limits using Limit Laws

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$

Use these graphs to estimate:

$$
\text { 1. } \begin{aligned}
& \lim _{x \rightarrow-2}[f(x)+5 g(x)] \\
&= \lim _{x \rightarrow-2} f(x)+\lim _{x \rightarrow-2}[5 g(x)] \\
&= \lim _{x \rightarrow-2} f(x)+5 \lim _{x \rightarrow-2} g(x) \\
&=2+5(-1) \\
&=-3
\end{aligned}
$$

Calculating Limits using Limit Laws

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$

Use these graphs to estimate:
2. $\lim _{x \rightarrow 1}[f(x) g(x)]$
$=\lim _{x \rightarrow 1} f(x) \cdot \lim _{x \rightarrow 1} g(x)$
$\left\langle\lim _{x \rightarrow 1} g(x)\right.$ does not exist
(we cannot use the limit laws)

Calculating Limits using Limit Laws

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$

Use these graphs to estimate:
2a. $\lim _{x \rightarrow 1^{-}}[f(x) g(x)]$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1^{-}} f(x) \cdot \lim _{x \rightarrow 1^{-}} g(x) \\
& =2 \cdot-2=-4
\end{aligned}
$$

2b. $\lim _{x \rightarrow 1^{+}}[f(x) g(x)]$
$=\lim _{x \rightarrow 1^{+}} f(x) \cdot \lim _{x \rightarrow 1^{+}} g(x)$
$=2 \cdot-1=-2$
$\Longrightarrow \lim _{x \rightarrow 1}[f(x) g(x)]$ does not exist

Calculating Limits using Limit Laws

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$

Use these graphs to estimate:
3. $\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow 2} f(x)}{\lim _{x \rightarrow 2} g(x)}$
$\downarrow \lim _{x \rightarrow 2} g(x)=0$
(we cannot use the limit laws)

Calculating Limits using Limit Laws

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$

Use these graphs to estimate:
Lets try without limit laws:
3a. $\lim _{x \rightarrow 2^{-}} \frac{f(x)}{g(x)}=-\infty$
since $\lim _{x \rightarrow 2^{-}} f(x) \approx 1.6$, and $g(x)$ approaches $0, g(x)<0$
3b. $\lim _{x \rightarrow 2^{+}} \frac{f(x)}{g(x)}=\infty$
since $\lim _{x \rightarrow 2^{+}} f(x) \approx 1.6$, and $g(x)$ approaches $0, g(x)>0$

More Limits Laws

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$ for n a positive integer
7. $\lim _{x \rightarrow a} c=c$
8. $\lim _{x \rightarrow a} x^{n}=a^{n}$
9. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$ for n a positive integer (if n is even we require $a>0$)
10. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ for n a positive integer (if n is even we require $\lim _{x \rightarrow a} f(x)>0$)

Limit Laws: Examples

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$ for n a positive integer
7. $\lim _{x \rightarrow a} c=c$
8. $\lim _{x \rightarrow a} x^{n}=a^{n}$
9. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$ for n a positive integer (if n is even we require $a>0$)
10. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ for n a positive integer (if n is even we require $\lim _{x \rightarrow a} f(x)>0$)

$$
\begin{aligned}
\lim _{x \rightarrow 5}\left(2 x^{2}-3 x+4\right) & =\lim _{x \rightarrow 5}\left(2 x^{2}\right)-\lim _{x \rightarrow 5}(3 x)+\lim _{x \rightarrow 5} 4 & & \text { (law 1 and 2) } \\
& =2 \lim _{x \rightarrow 5}\left(x^{2}\right)-3 \lim _{x \rightarrow 5}(x)+4 & & \text { (law 3 and 7) } \\
& =2 \cdot 5^{2}-3 \cdot 5+4=39 & & \text { (law 8) }
\end{aligned}
$$

Limit Laws: Examples

$$
\begin{aligned}
& \lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x} \\
& =\frac{\lim _{x \rightarrow-2}\left(x^{3}+2 x^{2}-1\right)}{\lim _{x \rightarrow-2}(5-3 x)} \\
& =\frac{\lim _{x \rightarrow-2} x^{3}+2 \lim _{x \rightarrow-2} x^{2}-\lim _{x \rightarrow-2} 1}{\lim _{x \rightarrow-2} 5-3 \lim _{x \rightarrow-2} x} \quad \text { (law 1,2,3) } \\
& =\frac{(-2)^{3}+2 \cdot(-2)^{2}-1}{5-3 \cdot(-2)} \\
& =-\frac{1}{11} \\
& \text { (law 5) } \\
& \text { (law 1, 2, 3) } \\
& \text { (law 7, 8) }
\end{aligned}
$$

Computing Limits: Direct Substitution Property

Direct Substitution Property

If f is a polynomial or a rational and a is in the domain of f, then:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Works also for one-sided limits $\lim _{x \rightarrow a^{ \pm}} f(x)=f(a)$.
Works also for algebraic functions if $f(x)$ is defined close to a.

The function $f(x)=2 x^{2}-3 x+4$ is a polynomial and hence:

$$
\lim _{x \rightarrow 5} f(x)=f(5)=2 \cdot 5^{2}-3 \cdot 5+4=39
$$

The function $g(x)=\frac{x^{3}+2 x^{2}-1}{5-3 x}$ is rational and -2 is in the domain; hence:

$$
\lim _{x \rightarrow-2} g(x)=g(-2)=\frac{(-2)^{3}+2 \cdot(-2)^{2}-1}{5-3 \cdot(-2)}=-\frac{1}{11}
$$

Computing Limits: Function Replacement

Function Replacement

If $f(x)=g(x)$ for all $x \neq a$, then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$
(provided that the limit exists).
Actually it suffices $f(x)=g(x)$ when x is close to a.
Find $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$.

- Direct substitution is not applicable because $x=1$ is not in the domain.
We replace the function:

$$
\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1} \stackrel{\text { for } x \neq 1}{=} x+1
$$

As a consequence

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} x+1=1+1=2
$$

Computing Limits: Function Replacement

Find $\lim _{x \rightarrow 1} g(x)$ where

$$
g(x)= \begin{cases}2 x+1 & \text { for } x \neq 1 \\ \pi & \text { for } x=1\end{cases}
$$

We have:

$$
g(x)=2 x+1 \quad \text { for all } x \neq 1
$$

As a consequence:

$$
\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} 2 x+1=2+1=3
$$

Computing Limits: Function Replacement

Find

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}
$$

We have:

$$
\frac{(3+h)^{2}-9}{h}=\frac{9+6 h+h^{2}-9}{h}=\frac{6 h+h^{2}}{h} \stackrel{\text { for } h \neq 0}{=} 6+h
$$

As a consequence:

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}=\lim _{h \rightarrow 0}(6+h)=6
$$

Computing Limits: Function Replacement

Find

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}
$$

We have:

$$
\begin{aligned}
\frac{\sqrt{t^{2}+9}-3}{t^{2}} & =\frac{\sqrt{t^{2}+9}-3}{t^{2}} \cdot \frac{\sqrt{t^{2}+9}+3}{\sqrt{t^{2}+9}+3}=\frac{t^{2}+9-9}{t^{2} \cdot\left(\sqrt{t^{2}+9}+3\right)} \\
& =\frac{t^{2}}{t^{2} \cdot\left(\sqrt{t^{2}+9}+3\right)} \stackrel{\text { for }}{\stackrel{t \neq 0}{=} \frac{1}{\sqrt{t^{2}+9}+3}}
\end{aligned}
$$

As a consequence:

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}} & =\lim _{t \rightarrow 0} \frac{1}{\sqrt{t^{2}+9}+3} \\
& =\frac{1}{\sqrt{\lim _{t \rightarrow 0}\left(t^{2}+9\right)}+3} \quad \text { by laws } 5,1,9,7 \\
& =\frac{1}{\sqrt{9}+3}=\frac{1}{6}
\end{aligned}
$$

Limits and One-Sided Limits

We recall the following theorem:

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if } \quad \lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

The theorem in words:

- The limit of $f(x)$, for x approaching a, is L if and only if the left-limit and the right-limit at a are both L.

The limit laws also apply for one-sided limits!

- if $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$ then $\lim _{x \rightarrow a} f(x)$ does not exist

Computing Limits: Function Replacement

Function replacement for one-sided limits:
If $f(x)=g(x)$ for all $x<a$, then $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}} g(x)$.
If $f(x)=g(x)$ for all $x>a$, then $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)$.

Find $\lim _{x \rightarrow 2^{-}} g(x)$ where

$$
g(x)= \begin{cases}x^{2} & \text { for } x<2 \\ 5 x+1 & \text { for } x \geq 2\end{cases}
$$

We have

$$
g(x)=x^{2} \quad \text { for all } x<2
$$

Hence:

$$
\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{-}} x^{2}=4
$$

Computing Limits: Function Replacement

For one-sided limits we have:
If $f(x)=g(x)$ for all $x<a$, then $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}} g(x)$.
If $f(x)=g(x)$ for all $x>a$, then $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)$.

Find $\lim _{x \rightarrow 0}|x|$ where

$$
|x|= \begin{cases}x & \text { for } x \geq 0 \\ -x & \text { for } x<0\end{cases}
$$

Since $|x|=x$ for all $x>0$ we obtain:

$$
\lim _{x \rightarrow 0^{+}}|x|=\lim _{x \rightarrow 0^{+}} x=0
$$

Since $|x|=-x$ for all $x<0$ we obtain:

$$
\lim _{x \rightarrow 0^{-}}|x|=\lim _{x \rightarrow 0^{-}}-x=0
$$

Hence $\lim _{x \rightarrow 0}|x|=0$.

Computing Limits: Function Replacement

For one-sided limits we have:
If $f(x)=g(x)$ for all $x<a$, then $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}} g(x)$.
If $f(x)=g(x)$ for all $x>a$, then $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)$.

Proof that $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist.
For all $x>0$ we have $\frac{|x|}{x}=\frac{x}{x}=1$. Thus

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} 1=1
$$

For all $x<0$ we have $\frac{|x|}{x}=\frac{-x}{x}=-1$. Thus

$$
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}}-1=-1
$$

Hence $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist since $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x} \neq \lim _{x \rightarrow 0^{+}} \frac{|x|}{x}$.

Properties of Limits

If

- $f(x) \leq g(x)$ when x is near a (except possibly a),
- $\lim _{x \rightarrow a} f(x)$ exists, and
- $\lim _{x \rightarrow a} g(x)$ exist,
then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Formally, near a means on $(a-\epsilon, a+\epsilon) \backslash\{a\}$ for some $\epsilon>0$.

We have $x^{3} \leq x^{2}$ for $x \in(-1,1)$.
As a consequence:

$$
\lim _{x \rightarrow a} x^{3} \leq \lim _{x \rightarrow a} x^{2}
$$

for all $a \in(-1,1)$.

Properties of Limits

The Squeeze Theorem
If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly a) and

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Here f is below g, and h is above g (close to a). If f and h have the same limit, then the squeezed function g also has.

Properties of Limits

Show that $\lim _{x \rightarrow 0} g(x)=0$ where $g(x)=x^{2} \cdot \sin \frac{1}{x}$.
The application of limit laws

$$
\lim _{x \rightarrow 0}\left(x^{2} \cdot \sin \frac{1}{x}\right)=\left(\lim _{x \rightarrow 0} x^{2}\right) \cdot\left(\lim _{x \rightarrow 0} \sin \frac{1}{x}\right)
$$

does not work since $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.
To apply the squeeze theorem we need:

- a function f smaller (\leq) than g, and
- a function h bigger (\geq) than g
for which $\lim _{x \rightarrow 0} f(x)=0$ and $\lim _{x \rightarrow 0} h(x)=0$.
We know that $-1 \leq \sin \frac{1}{x} \leq 1$ and hence

$$
-x^{2} \leq x^{2} \cdot \sin \frac{1}{x} \leq x^{2}
$$

Properties of Limits

We have

$$
-x^{2} \leq x^{2} \cdot \sin \frac{1}{x} \leq x^{2}
$$

We take $f(x)=-x^{2}$ and $h(x)=x^{2}$.

We know $\lim _{x \rightarrow 0} x^{2}=0$ and $\lim _{x \rightarrow 0}-x^{2}=0$.
Hence by the squeeze theorem we get: $\lim _{x \rightarrow 0} x^{2} \cdot \sin \frac{1}{x}=0$.

