Continuity

A function f is continuous at a number a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

The definition implicitly requires that:

- $f(a)$ is defined
- $\lim _{x \rightarrow a} f(x)$ exists

Intuitive meaning of continuous:

- gradual process without interruption or abrupt change
- small changes in x produce only small change in $f(x)$
- graph of the function can be drawn without lifting the pen

A function f is discontinuous at a number a if

- f is defined near a (except perhaps a), and
- f is not continuous at a

Continuity: Examples

Where is this graph continuous/discontinuous?

- discontinuous at $x=1$ since $f(1)$ is not defined
- discontinuous at $x=3$ since $\lim _{x \rightarrow 3} f(x)$ does not exist
- discontinuous at $x=5$ since $\lim _{x \rightarrow 5} f(x) \neq f(5)$

Everywhere else it is continuous.

Continuity: Examples

Where is $\frac{x^{2}-x-2}{x-2}$ (dis)continuous?

- discontinuous at $x=2$ since $f(2)$ is undefined
- continuous everywhere else by direct substitution property

Where is

$$
f(x)= \begin{cases}\frac{1}{x^{2}} & \text { for } x \neq 0 \\ 1 & \text { for } x=0\end{cases}
$$

(dis)continuous?

- discontinuous at $x=0$ since $\lim _{x \rightarrow 0} f(x)$ does not exist
- continuous everywhere else by direct substitution property

Continuity: Examples

A function f is continuous form the right at a number a if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

A function f is continuous form the left at a number a if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

Where is $\lfloor x\rfloor$ (dis)continuous?

$$
\lfloor x\rfloor=' \text { the largest integer } \leq x '
$$

- discontinuous at all integers
- left-discontinuous at all integers $\lim _{x \rightarrow n^{-}}\lfloor x\rfloor=n-1 \neq n=f(n)$
- but right-continuous everywhere
 $\lim _{x \rightarrow n^{+}}\lfloor x\rfloor=n=f(n)$

Continuity on Intervals

A function f is continuous on an interval if it is continuous on every number in the interval.

If the interval is left- and/or right-closed, then

- At the left-end we are only interested in right-continuity.
- At the right-end we are only interested in left-continuity. (the values outside of the interval do not matter)

Show that $f(x)=1-\sqrt{1-x^{2}}$ is continuous on $[-1,1]$.
For $-1<a<1$ we have by the limit laws:

$$
\lim _{x \rightarrow a} f(x)=1-\sqrt{\lim _{x \rightarrow a}\left(1-x^{2}\right)}=1-\sqrt{1-a^{2}}=f(a)
$$

Similar calculations show

- $\lim _{x \rightarrow-1^{+}} f(x)=1=f(-1)$
- $\lim _{x \rightarrow 1^{-}} f(x)=1=f(1)$

Therefore f is continuous on $[-1,1]$.

Continuity: Composition of Functions

If f and g are continuous at a and c is a constant, then the following functions are continuous at a :

$$
\begin{aligned}
& \text { 1. } f+g \\
& \text { 2. } f-g \\
& \text { 3. } c \cdot f \\
& \text { 4. } f \cdot g \\
& \text { 5. } \frac{f}{g} \text { if } g(a) \neq 0
\end{aligned}
$$

All of these can be proven from the limit laws!
For example, (1) can be proven as follows:

$$
\begin{aligned}
\lim _{x \rightarrow a}(f+g)(x) & =\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a)=(f+g)(a)
\end{aligned}
$$

Thus $f+g$ is continuous at a.

Continuity

These functions are continuous at each point of their domain:
polynomials rationals root functions
(inverse) trigonometric exponential logarithmic

Inverse functions of continuous functions are continuous.
Recall that continuity at a means that

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

and this is direct substitution.
Evaluate $\lim _{x \rightarrow \pi} f(x)$ where $f(x)=\frac{\sin x}{2+\cos x}$.
We know that sin, cos and 2 are continuous functions.
Then their sum and quotient are continuous on their domain.
The domain contains π, so: $\lim _{x \rightarrow \pi} f(x)=f(\pi)=0 /(2-1)=0$.

Continuity: Function Composition

If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a}(g(x))\right.
$$

Evaluate $\lim _{x \rightarrow 4} \sin \left(\frac{\pi}{4+\sqrt{x}}\right)$. We have

$$
\begin{array}{rlrl}
\lim _{x \rightarrow 4} \sin \left(\frac{\pi}{4+\sqrt{x}}\right) & =\sin \left(\lim _{x \rightarrow 4} \frac{\pi}{4+\sqrt{x}}\right) & & \text { since } \sin \text { is continuous } \\
& =\sin \left(\frac{\pi}{4+\sqrt{4}}\right) & \text { direct substitution } \\
& =\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} &
\end{array}
$$

Continuity: Function Composition

The composite function $f \circ g$ is defined by

$$
(f \circ g)(x)=f(g(x))
$$

If

- g is continuous at a, and
- f is continuous at $g(a)$,
then the composite function $f \circ g$ is continuous at a.
A continuous function of a continuous function is continuous.
Where is $h(x)=\sin x^{2}$ continuous?
Both x^{2} and sin are continuous everywhere (on $(-\infty, \infty)$).
Thus $h(x)$ is continuous everywhere.
Where is $h(x)=\ln (1+\cos x)$ continuous?
The functions $1, \cos$ (and their sum) and In are on their domain.
Thus $h(x)$ is continuous on its domain: $\mathbb{R} \backslash\{ \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots\}$.

Continuity: Intermediate Value Theorem

Intermediate Value Theorem

Suppose f is continuous on the closed interval $[a, b]$ with $f(a) \neq f(b)$. If N is strictly between $f(a)$ and $f(b)$. Then

$$
f(c)=N \quad \text { for some number } c \text { in }(a, b)
$$

Every N between $f(a)$ and $f(b)$ occurs at least once on (a, b). Intuitively: the graph cannot jump over the line $y=N$.

Continuity: Intermediate Value Theorem

Show that there is a root of the equation

$$
4 x^{3}-6 x^{2}+3 x-2=0
$$

between 1 and 2.
We are looking for number c such that $f(c)=0$ and $1<c<2$.
We have:

- the function is continuous on the interval since it is a polynomial
- $f(1)=4-6+3-2=-1$
- $f(2)=4 \cdot 8-6 \cdot 4+3 \cdot 2-2=12$

Moreover $-1<0<12$. Thus we can apply the Intermediate Value Theorem for the interval $[1,2]$ and $N=0$.

Hence there exists c in $(1,2)$ such that $f(c)=0$.

Continuity: Intermediate Value Theorem

Whenever applying the Intermediate Value Theorem, it is important to check that the function is continuous on the interval.

Here we have:

- $f(2)<1$
- $f(4)>2$

But there exists no $2<c<4$ such that $f(c)=1.5$!

Continuity: Intermediate Value Theorem

Show that the following equation

$$
6 \cdot 3^{-x}=4-x
$$

has a solution for x in $[0,1]$.
Define

$$
6 \cdot 3^{-x}=4-x \quad \Longleftrightarrow \quad 6 \cdot 3^{-x}+x-4=0
$$

The function $f(x)=6 \cdot 3^{-x}+x-4$ is a sum and product of continuous functions, and hence continuous.
We have:

- $f(0)=6 \cdot 3^{0}+0-4=2$
- $f(1)=6 \cdot 3^{-1}+1-4=-1$

Moreover $-1<0<2$.
By the Intermediate Value Theorem there exists x in the interval $[0,1]$ such that $f(x)=0$. This x is a solution of the equation.

