
Continuity

A function f is continuous at a number a if

lim
x→a

f (x) = f (a)

The definition implicitly requires that:
I f (a) is defined
I limx→a f (x) exists

Intuitive meaning of continuous:
I gradual process without interruption or abrupt change
I small changes in x produce only small change in f (x)
I graph of the function can be drawn without lifting the pen

A function f is discontinuous at a number a if
I f is defined near a (except perhaps a), and
I f is not continuous at a



Continuity: Examples
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Where is this graph continuous/discontinuous?
I discontinuous at x = 1 since f (1) is not defined
I discontinuous at x = 3 since limx→3 f (x) does not exist
I discontinuous at x = 5 since limx→5 f (x) 6= f (5)

Everywhere else it is continuous.



Continuity: Examples

Where is x2−x−2
x−2 (dis)continuous?

I discontinuous at x = 2 since f (2) is undefined
I continuous everywhere else by direct substitution property

Where is

f (x) =

{
1
x2 for x 6= 0
1 for x = 0

(dis)continuous?
I discontinuous at x = 0 since limx→0 f (x) does not exist
I continuous everywhere else by direct substitution property



Continuity: Examples

A function f is continuous form the right at a number a if

lim
x→a+

f (x) = f (a)

A function f is continuous form the left at a number a if

lim
x→a−

f (x) = f (a)

Where is bxc (dis)continuous?

bxc = ‘ the largest integer ≤ x ’

I discontinuous at all integers
I left-discontinuous at all integers

limx→n−bxc = n − 1 6= n = f (n)
I but right-continuous everywhere

limx→n+bxc = n = f (n)
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Continuity on Intervals

A function f is continuous on an interval if it is continuous on
every number in the interval.

If the interval is left- and/or right-closed, then
I At the left-end we are only interested in right-continuity.
I At the right-end we are only interested in left-continuity.

(the values outside of the interval do not matter)

Show that f (x) = 1 −
√

1 − x2 is continuous on [−1,1].

For −1 < a < 1 we have by the limit laws:

lim
x→a

f (x) = 1 −
√

lim
x→a

(1 − x2) = 1 −
√

1 − a2 = f (a)

Similar calculations show
I limx→−1+ f (x) = 1 = f (−1)
I limx→1− f (x) = 1 = f (1)

Therefore f is continuous on [−1,1].



Continuity: Composition of Functions

If f and g are continuous at a and c is a constant, then the
following functions are continuous at a:

1. f + g
2. f − g
3. c · f
4. f · g
5. f

g if g(a) 6= 0

All of these can be proven from the limit laws!

For example, (1) can be proven as follows:

lim
x→a

(f + g)(x) = lim
x→a

[f (x) + g(x)] = lim
x→a

f (x) + lim
x→a

g(x)

= f (a) + g(a) = (f + g)(a)

Thus f + g is continuous at a.



Continuity

These functions are continuous at each point of their domain:

polynomials rationals root functions

(inverse) trigonometric exponential logarithmic

Inverse functions of continuous functions are continuous.

Recall that continuity at a means that

lim
x→a

f (x) = f (a)

and this is direct substitution.

Evaluate limx→π f (x) where f (x) = sin x
2+cos x .

We know that sin, cos and 2 are continuous functions.
Then their sum and quotient are continuous on their domain.
The domain contains π, so: limx→π f (x) = f (π) = 0/(2 − 1) = 0.



Continuity: Function Composition

If f is continuous at b and limx→a g(x) = b, then

lim
x→a

f (g(x)) = f ( lim
x→a

(g(x))

Evaluate limx→4 sin( π
4+

√
x ). We have

lim
x→4

sin(
π

4 +
√

x
) = sin( lim

x→4

π

4 +
√

x
) since sin is continuous

= sin(
π

4 +
√

4
) direct substitution

= sin(
π

6
) =

1
2



Continuity: Function Composition

The composite function f ◦ g is defined by

(f ◦ g)(x) = f (g(x))

If
I g is continuous at a, and
I f is continuous at g(a),

then the composite function f ◦ g is continuous at a.

A continuous function of a continuous function is continuous.

Where is h(x) = sin x2 continuous?
Both x2 and sin are continuous everywhere (on (−∞,∞)).
Thus h(x) is continuous everywhere.

Where is h(x) = ln(1 + cos x) continuous?
The functions 1, cos (and their sum) and ln are on their domain.
Thus h(x) is continuous on its domain: R \ {±π,±3π,±5π, . . .}.



Continuity: Intermediate Value Theorem

Intermediate Value Theorem
Suppose f is continuous on the closed interval [a,b] with
f (a) 6= f (b). If N is strictly between f (a) and f (b). Then

f (c) = N for some number c in (a,b)
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Every N between f (a) and f (b) occurs at least once on (a,b).
Intuitively: the graph cannot jump over the line y = N.



Continuity: Intermediate Value Theorem

Show that there is a root of the equation

4x3 − 6x2 + 3x − 2 = 0

between 1 and 2.

We are looking for number c such that f (c) = 0 and 1 < c < 2.

We have:

I the function is continuous on the interval since it is a
polynomial

I f (1) = 4 − 6 + 3 − 2 = −1
I f (2) = 4 · 8 − 6 · 4 + 3 · 2 − 2 = 12

Moreover −1 < 0 < 12. Thus we can apply the Intermediate
Value Theorem for the interval [1,2] and N = 0.

Hence there exists c in (1,2) such that f (c) = 0.



Continuity: Intermediate Value Theorem

Whenever applying the Intermediate Value Theorem, it is
important to check that the function is continuous on the
interval.
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Here we have:
I f (2) < 1
I f (4) > 2

But there exists no 2 < c < 4 such that f (c) = 1.5!



Continuity: Intermediate Value Theorem

Show that the following equation

6 · 3−x = 4 − x

has a solution for x in [0,1].

Define

6 · 3−x = 4 − x ⇐⇒ 6 · 3−x + x − 4 = 0

The function f (x) = 6 · 3−x + x − 4 is a sum and product of
continuous functions, and hence continuous.

We have:
I f (0) = 6 · 30 + 0 − 4 = 2
I f (1) = 6 · 3−1 + 1 − 4 = −1

Moreover −1 < 0 < 2.

By the Intermediate Value Theorem there exists x in the interval
[0,1] such that f (x) = 0. This x is a solution of the equation.


