Limits at Infinity

Lets investigate the behavior of the function

$$
f(x)=\frac{x^{2}-1}{x^{2}+1}
$$

when x becomes large:

As x grows larger, the values of $f(x)$ get closer and closer to 1 . This is expressed by

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}+1}=1
$$

Limits at Infinity

Let f be a function defined on some interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

spoken: "the limit of $f(x)$, as x approaches infinity, is L "
if the values $f(x)$ can be made arbitrarily close to L by taking x sufficiently large.

Limits at Infinity

Let f be a function defined on some interval $(-\infty, a)$. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

spoken: "the limit of $f(x)$, as x approaches negative infinity, is L "
if the values $f(x)$ can be made arbitrarily close to L by taking x sufficiently large negative.

Limits at Infinity: Horizontal Asymptotes

The line $y=L$ is called horizontal asymptote of a function f if

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

The function $f(x)=\frac{x^{2}-1}{x^{2}+1}$ has a horizontal asymptote at $y=1$.

Limits at Infinity: Horizontal Asymptotes

The line $y=L$ is called horizontal asymptote of a function f if

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

The inverse tangent $\tan ^{-1}$ has horizontal asymptotes

$$
y=-\frac{\pi}{2} \quad \text { and } \quad y=\frac{\pi}{2}
$$

$$
\lim _{x \rightarrow-\infty} \tan ^{-1} x=-\frac{\pi}{2} \quad \lim _{x \rightarrow \infty} \tan ^{-1} x=\frac{\pi}{2}
$$

Limits at Infinity

Find $\lim _{x \rightarrow \infty} \frac{1}{x}$ and $\lim _{x \rightarrow-\infty} \frac{1}{x}$.
As x gets larger, $\frac{1}{x}$ gets closer to 0 .
Thus $\lim _{x \rightarrow \infty} \frac{1}{x}=0$.
As x gets larger negative, $\frac{1}{x}$ gets closer to 0 .
Thus $\lim _{x \rightarrow-\infty} \frac{1}{x}=0$.

The function has the horizontal asymptote $y=0$.

Limits at Infinity: Laws

All limits laws for $\lim _{x \rightarrow a}$ work also for $\lim _{x \rightarrow \pm \infty}$, except for:

$$
\lim _{x \rightarrow a} x^{n}=a^{n} \quad \lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}
$$

For example, we can derive the following important theorem:
For $r>0$ we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0
$$

and if x^{r} is defined for all x, then also

$$
\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0
$$

Proof

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)^{r}=\left(\lim _{x \rightarrow \infty} \frac{1}{x}\right)^{r}=0^{r}=0
$$

Limits at Infinity

Evaluate

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}
$$

We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1} & =\lim _{x \rightarrow \infty}\left(\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1} \cdot \frac{\left(\frac{1}{x^{2}}\right)}{\left(\frac{1}{x^{2}}\right)}\right) \\
& =\lim _{x \rightarrow \infty} \frac{3-\frac{1}{x}-\frac{2}{x^{2}}}{5+\frac{4}{x}+\frac{1}{x^{2}}} \\
& =\frac{\lim _{x \rightarrow \infty}\left(3-\frac{1}{x}-\frac{2}{x^{2}}\right)}{\lim _{x \rightarrow \infty}\left(5+\frac{4}{x}+\frac{1}{x^{2}}\right)} \\
& =\frac{3}{5}
\end{aligned}
$$

Limits at Infinity

Evaluate

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{2 x^{2}+1}}{3 x-5}
$$

We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} & \frac{\sqrt{2 x^{2}+1}}{3 x-5}=\lim _{x \rightarrow \infty}\left(\frac{\sqrt{2 x^{2}+1}}{3 x-5} \cdot \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x^{2}+1}}{x}}{3-\frac{5}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x^{2}+1}}{\sqrt{x^{2}}}}{3-\frac{5}{x}} \text { since } x>0, x=\sqrt{x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{2+\frac{1}{x^{2}}}}{3-\frac{5}{x}}=\frac{\lim _{x \rightarrow \infty} \sqrt{2+\frac{1}{x^{2}}}}{\lim _{x \rightarrow \infty}\left(3-\frac{5}{x}\right)} \\
& =\frac{\sqrt{\lim _{x \rightarrow \infty}\left(2+\frac{1}{x^{2}}\right)}}{3}=\frac{\sqrt{2}}{3}
\end{aligned}
$$

Limits at Infinity

Evaluate

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}+1}}{3 x-5}
$$

We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} & \frac{\sqrt{2 x^{2}+1}}{3 x-5}=\lim _{x \rightarrow \infty}\left(\frac{\sqrt{2 x^{2}+1}}{3 x-5} \cdot \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x^{2}+1}}{x}}{3-\frac{5}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x^{2}+1}}{\sqrt{x^{2}}}}{3-\frac{5}{x}} \text { since } x<0, x=-\sqrt{x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{2+\frac{1}{x^{2}}}}{3-\frac{5}{x}}=\frac{\lim _{x \rightarrow \infty} \sqrt{2+\frac{1}{x^{2}}}}{\lim _{x \rightarrow \infty}\left(3-\frac{5}{x}\right)} \\
& =\frac{\sqrt{\lim _{x \rightarrow \infty}\left(2+\frac{1}{x^{2}}\right)}}{3}=\frac{\sqrt{2}}{3}
\end{aligned}
$$

Limits at Infinity

Evaluate

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}+1}}{3 x-5}
$$

We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} & \frac{\sqrt{2 x^{2}+1}}{3 x-5}=\lim _{x \rightarrow \infty}\left(\frac{\sqrt{2 x^{2}+1}}{3 x-5} \cdot \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x^{2}+1}}{x}}{3-\frac{5}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x^{2}+1}}{-\sqrt{x^{2}}}}{3-\frac{5}{x}} \text { since } x<0, x=-\sqrt{x^{2}} \\
& =\lim _{x \rightarrow \infty}-\frac{\sqrt{2+\frac{1}{x^{2}}}}{3-\frac{5}{x}}=-\frac{\lim _{x \rightarrow \infty} \sqrt{2+\frac{1}{x^{2}}}}{\lim _{x \rightarrow \infty}\left(3-\frac{5}{x}\right)} \\
& =-\frac{\sqrt{\lim _{x \rightarrow \infty}\left(2+\frac{1}{x^{2}}\right)}}{3}=-\frac{\sqrt{2}}{3}
\end{aligned}
$$

Limits at Infinity

Evaluate

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-1}-x\right)
$$

We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-1}-x\right) & =\lim _{x \rightarrow \infty}\left(\frac{\sqrt{x^{2}-1}-x}{1} \cdot \frac{\sqrt{x^{2}-1}+x}{\sqrt{x^{2}-1}+x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}-1-x^{2}}{\sqrt{x^{2}-1}+x} \\
& =\lim _{x \rightarrow \infty}-\frac{1}{\sqrt{x^{2}-1}+x} \\
& =\lim _{x \rightarrow \infty}-\frac{1}{\sqrt{x^{2}-1}+x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty}-\frac{\frac{1}{x}}{\sqrt{1-\frac{1}{x^{2}}}+1}=\frac{0}{2}=0
\end{aligned}
$$

Limits at Infinity

The graph of $\tan ^{-1}$.

Evaluate

$$
\lim _{x \rightarrow 2+} \tan ^{-1}\left(\frac{1}{x-2}\right)=\lim _{x \rightarrow \infty} \tan ^{-1} x=\frac{\pi}{2}
$$

Limits at Infinity

For exponential function we have:

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} a^{x}=0 & \text { for } 0 \leq a<1 \\
\lim _{x \rightarrow-\infty} a^{x}=0 & \text { for } a>1
\end{array}
$$

For any polynomial P and $a>1$ we have

$$
\lim _{x \rightarrow \infty} \frac{P(x)}{a^{x}}=0
$$

since the exponential function grows after than any polynomial.

For any polynomial P and $0<a<1$ we have

$$
\lim _{x \rightarrow-\infty} \frac{P(x)}{a^{x}}=0
$$

Limits at Infinity

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}
$$

A good heuristic (this is not a law) for to look at:

- the fastest growing addend of $f(x)$
- the fastest growing addend of $g(x)$

Typically, the other addends do not matter.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}=\frac{3}{5} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{5 x^{3}+1}+2 x^{2}}{x^{2}+1}=2 \\
& \lim _{x \rightarrow \infty} \frac{5 x^{3}+x+x \cdot x^{2}}{2 x^{3}-x}=3
\end{aligned}
$$

Limits at Infinity

Evaluate

$$
\lim _{x \rightarrow \infty} \frac{3 x^{5}+x^{2}-2}{x^{2}-x+2^{x}}=0
$$

since 2^{x} grows faster than any polynomial.

Evaluate

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}+x}{5 x^{2}-x+5^{-x}}=\frac{3}{5}
$$

since $\lim _{x \rightarrow \infty} 5^{-x}=0$.

Evaluate

$$
\lim _{x \rightarrow 0^{-}} e^{\frac{1}{x}}=\lim _{x \rightarrow-\infty} e^{x}=0
$$

Limits at Infinity

Evaluate

$$
\lim _{x \rightarrow \infty} \sin (x)=\text { does not exist }
$$

since $\sin (x)$ oscillates between -1 and 1 .

Evaluate

$$
\lim _{x \rightarrow \infty} \frac{3 \sin (x)}{x^{2}}=0
$$

since the denominator grows to infinity while $-3 \leq 3 \sin (x) \leq 3$.

Evaluate

$$
\lim _{x \rightarrow \infty} \frac{2 x^{3}+x^{2} \cdot \cos (x)+3 e^{x}+x}{x^{5}+5 e^{x}}=\frac{3}{5}
$$

since the exponential functions grow much faster than the rest. To use limit laws, multiply numerator and denominator by $\frac{1}{e^{x}}$.

Infinite Limits at Infinity

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

if we can make the values of $f(x)$ arbitrary large by taking x sufficiently large.

Similar for:

$$
\lim _{x \rightarrow \infty} f(x)=-\infty \quad \lim _{x \rightarrow-\infty} f(x)=\infty \quad \lim _{x \rightarrow-\infty} f(x)=-\infty
$$

$$
\lim _{x \rightarrow \infty} x^{3}=\infty \quad \lim _{x \rightarrow-\infty} x^{3}=-\infty
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} a^{x} & =\infty & & \text { for } a>1 \\
\lim _{x \rightarrow-\infty} a^{x} & =\infty & & \text { for } 0<a<1
\end{aligned}
$$

Infinite Limits at Infinity

Evaluate

$$
\lim _{x \rightarrow \infty}\left(x^{2}-x\right)
$$

The limit laws do not help since:

$$
\lim _{x \rightarrow \infty}\left(x^{2}-x\right)=\lim _{x \rightarrow \infty} x^{2}-\lim _{x \rightarrow \infty} x=\infty-\infty=\text { invalid expression }
$$

However, we can write

$$
\lim _{x \rightarrow \infty}\left(x^{2}-x\right)=\lim _{x \rightarrow \infty} x(x-1)=\infty
$$

because both x and $x-1$ become arbitrarily large.

Infinite Limits at Infinity: Heuristics

All on this slide is heuristics, not laws!
On the last slide we could have reasoned as follows:

$$
\lim _{x \rightarrow \infty}\left(x^{2}-x\right)=\lim _{x \rightarrow \infty} x \cdot \lim _{x \rightarrow \infty}(x-1)=\infty \cdot \infty=\infty
$$

Valid calculations with ∞ and x a real number:

$$
\begin{array}{lrr}
\infty+\infty=\infty & \infty+x=\infty & \frac{x}{\infty}=0 \\
\frac{\infty}{x}=\infty \text { if } x>0 & \frac{\infty}{x}=-\infty \text { if } x<0
\end{array}
$$

Invalid, undefined expressions:

$$
\infty-\infty \quad \infty+(-\infty) \quad \frac{\infty}{\infty} \quad 0 \cdot \infty
$$

Infinite Limits at Infinity

Evaluate

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+x}{3-x}
$$

We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}+x}{3-x} & =\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x}{3-x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}\right) \\
& =\lim _{x \rightarrow \infty} \frac{x+1}{\frac{3}{x}-1} \\
& =\frac{\infty}{0-1} \\
& =-\infty
\end{aligned}
$$

because $x+1$ grows to infinity while $\frac{3}{x}-1$ gets closer to -1 .

