Finding a Tangent

We move Q closer and closer to P.

The limit is the tangent.
The tangent line to the curve $f(x)$ at point $P=(a, f(a))$ is the line through P with slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided that the limit exists.

Finding a Tangent

The tangent line to the curve $f(x)$ at point $P=(a, f(a))$ is the line through P with slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided that the limit exists.

Find an equation of the tangent line to $f(x)=x^{2}$ at point $(1,1)$.
We use the equation for the slope with $a=1$:

$$
\begin{aligned}
m & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(x+1)=2
\end{aligned}
$$

Thus $y-1=2(x-1)$, that is, the tangent is $y=2 x-1$.

Finding a Tangent

Alternative definition of the slope:
The slope of f at point $(a, f(a))$ is:

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

The slope m is also called the slope of the curve at the point.

Find an equation of the tangent to $f(x)=\frac{3}{x}$ at point $(3,1)$.
The slope is:

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{\frac{3}{3+h}-1}{h}=\lim _{h \rightarrow 0} \frac{\frac{3-(3+h)}{3+h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(3+h)}=\lim _{h \rightarrow 0}-\frac{1}{3+h}=-\frac{1}{3}
\end{aligned}
$$

Thus $y-1=-\frac{1}{3}(x-3)$, that is, the tangent is $y=2-\frac{x}{3}$.

Velocities

Let $f(t)$ be a position function of an object:

- $f(t)$ is the position (distance form the origin) after time t

The average velocity in the time interval $(a, a+h)$ is

$$
\text { average velocity }=\frac{\text { difference in position }}{\text { time difference }}=\frac{f(a+h)-f(a)}{h}
$$

The (instantaneous) velocity $v(a)$ at time $t=a$ is:

$$
v(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

which is the slope of the tangent at point $(a, f(a))$.
Let $f(t)=2 t^{2}$. What is the speed of the object after n seconds?

$$
\begin{aligned}
v(n) & =\lim _{h \rightarrow 0} \frac{2 \cdot(n+h)^{2}-2 \cdot n^{2}}{h}=\lim _{h \rightarrow 0} \frac{4 n h+2 \cdot h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(4 n+2 \cdot h)=4 n
\end{aligned}
$$

Derivatives

The derivative of a function f at a number a, denoted $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if the limit exits.
Find the derivative of $f(x)=x^{2}-8 x+9$ at number a.

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(a+h)^{2}-8(a+h)+9\right]-\left[a^{2}-8 a+9\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{2}+2 a h+h^{2}-8 a-8 h+9-a^{2}+8 a-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 a h+h^{2}-8 h}{h}=\lim _{h \rightarrow 0}(2 a+h-8) \\
& =2 a-8
\end{aligned}
$$

Derivatives

The derivative of a function f at a number a, denoted $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if the limit exits.
An equivalent way of defining the derivative (take $x=a+h$):

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

The tangent line to f at point $(a, f(a))$ is the line through $(a, f(a))$ with slope $f^{\prime}(a)$, the derivative of f at a.

Find an equation of the tangent to $f(x)=x^{2}-8 x+9$ at $(3,-6)$.
We know $f^{\prime}(a)=2 a-8$, and thus $f^{\prime}(3)=-2$.
Hence $\quad y+6=-2(x-3) \quad$,that is, $\quad y=-2 x$

Rates of Change

Suppose y is a quantity that depends on x. That is $y=f(x)$. If x changes from x_{1} to x_{2}, the change (increment) of x is

$$
\Delta x=x_{2}-x_{1}
$$

and the corresponding change in y is

$$
\Delta y=f\left(x_{2}\right)-f\left(x_{1}\right)
$$

The average rate of change over the interval $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

The instantaneous rate of change by letting Δx go to 0 :
instantaneous rate of change $=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$
This is the derivative $f^{\prime}\left(x_{1}\right)$!
(Note that large derivative $f^{\prime}\left(x_{1}\right)$ means rapid change.)

Rates of Change

A manufacturer produces some fabric. The costs for producing x yards are $f(x)$ dollars.

- What is the meaning of $f^{\prime}(x)$ (called marginal costs)?
- What does it mean to say $f^{\prime}(1000)=9$?
- Which do you think is greater $f^{\prime}(50)$ or $f^{\prime}(500)$?

Answers:

- $f^{\prime}(x)$ is the rate of change of production costs in dollars per yard with respect to the number of yards produced
- $f^{\prime}(1000)=9$ means that after having produced 1000 yards, the costs increase by 9 dollars for additional yards
- Typically $f^{\prime}(500)<f^{\prime}(50)$ since usually the cost of production per yard will decrease the more you produce (due to fixed costs: you have already bought and installed the machines...)

Rates of Change

Rates of change are important in:

- all natural sciences,
- in engineering, and
- social sciences

Examples of rate of change:

- in economics: change of production costs with respect to the number of items produced (called marginal costs)
- in physics: rate of change of work with respect to time (called power)
- in chemistry: rate of change of the concentration of a reactant with respect to time (called rate of reaction)
- in biology: rate of change of the population of bacteria with respect to time

