Derivatives of Basic Functions

The derivative of a constant function

$$
\begin{aligned}
& \frac{d}{d x}(c)=0 \\
& \frac{d}{d x}(x)=1
\end{aligned}
$$

If n is any real number, then

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Differentiate the following functions:

- $\frac{d}{d x}\left(x^{7}\right)=7 x^{6}$
- $\frac{d}{d x}\left(\frac{1}{x^{2}}\right)=\frac{d}{d x}\left(x^{-2}\right)=-2 x^{-3}=-\frac{2}{x^{3}}$
- $\frac{d}{d x}\left(\sqrt[3]{x^{2}}\right)=\frac{d}{d x}\left(x^{\frac{2}{3}}\right)=\frac{2}{3} x^{\frac{2}{3}-1}=\frac{2}{3} x^{-\frac{1}{3}}$

Derivatives of Basic Functions

The normal line is perpendicular to the tangent.
If the tangent has slope m, then the normal line has slope $-\frac{1}{m}$.
Find equations for the tangent and normal line to $x \sqrt{x}$ at $(1,1)$.

$$
f^{\prime}(x)=\frac{d}{d x}(x \sqrt{x})=\frac{d}{d x}\left(x^{1.5}\right)=1.5 x^{.5}=\frac{3}{2} \sqrt{x}
$$

The slope of the tangent at $(1,1)$ is $\frac{3}{2}$. Hence the tangent is

$$
y-1=\frac{3}{2}(x-1) \quad y=\frac{3}{2} x-\frac{1}{2}
$$

The slope of the normal at $(1,1)$ is $-1 / \frac{3}{2}=-\frac{2}{3}$. Hence the normal is

$$
y-1=-\frac{2}{3}(x-1) \quad y=-\frac{2}{3} x+\frac{5}{3}
$$

Derivatives of Basic Functions

Constant Multiple Rule

If c is a constant and f is differentiable, then

$$
\frac{d}{d x}[c f(x)]=c \cdot \frac{d}{d x} f(x)
$$

Sum Rule

If f and g are differentiable, then

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

Difference Rule

If f and g are differentiable, then

$$
\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)
$$

Derivatives of Basic Functions

Compute the following derivative:

$$
\begin{aligned}
\frac{d}{d x} & \left(12 x^{5}-10 x^{3}-6 x+5\right) \\
& =12 \frac{d}{d x}\left(x^{5}\right)-10 \frac{d}{d x}\left(x^{3}\right)-6 \frac{d}{d x}(x)+\frac{d}{d x}(5) \\
& =12 \cdot 5 x^{4}-10 \cdot 3 x^{2}-6 \cdot 1+0=60 x^{4}-30 x^{2}-6
\end{aligned}
$$

The motion of a particle is given by:

- $s(t)=2 t^{3}-5 t^{2}+3 t+4 \quad(t$ is in seconds, and $s(t)$ in cm$)$

Find the acceleration function, and the acceleration after $2 s$.

$$
\begin{array}{ll}
v(t)=\frac{d}{d t} s(t)=6 t^{2}-10 t+3 & \text { in } \mathrm{cm} / \mathrm{s} \\
a(t)=\frac{d}{d t} v(t)=12 t-10 & \text { in } \mathrm{cm} / \mathrm{s}^{2}
\end{array}
$$

The acceleration after $2 s$ is $14 \mathrm{~cm} / \mathrm{s}^{2}$.

Derivatives of Basic Functions

Find the points of $f(x)=x^{4}-6 x^{2}+4$ with horizontal tangent. Horizontal tangent means that the slope (the derivative) is 0 :

$$
\frac{d}{d x} f(x)=4 x^{3}-12 x=4 x\left(x^{2}-3\right)
$$

Thus $f^{\prime}(x)=0$ when $x=0$ or $x=\sqrt{3}$ or $x=-\sqrt{3}$.
Thus the corresponding points are $(0,4),(\sqrt{3},-5),(-\sqrt{3},-5)$.

Derivatives of Basic Functions

Sum Rule

If f and g are differentiable, then

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

Proof.

$$
\begin{aligned}
\frac{d}{d x}[f(x)+g(x)] & =\lim _{h \rightarrow 0} \frac{[f(x+h)+g(x+h)]-[f(x)+g(x)]}{h} \\
& =\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)]+[g(x+h)-g(x)]}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
\end{aligned}
$$

Derivatives of Exponential Functions

We compute the derivative of $f(x)=a^{x}$:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} \cdot a^{h}-a^{x}}{h}=\lim _{h \rightarrow 0} a^{x} \frac{a^{h}-1}{h}=a^{x} \cdot \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
\end{aligned}
$$

Note that

$$
\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=f^{\prime}(0)
$$

For $f(x)=a^{x}$ we have

$$
f^{\prime}(x)=f^{\prime}(0) \cdot a^{x}
$$

Note that slope is proportional to the function itself.

Derivatives of Exponential Functions

For $f(x)=a^{x}$ we have

$$
f^{\prime}(x)=f^{\prime}(0) \cdot a^{x}
$$

Using the calculator we can estimate that:

$$
\begin{array}{ll}
\text { for } a=2 & f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{2^{h}-1}{h} \approx 0.69 \\
\text { for } a=3 & f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{3^{h}-1}{h} \approx 1.10
\end{array}
$$

There is a number a between 2 and 3 such that $f^{\prime}(0)=1$:

$$
e \text { is the number such that } \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

The function e^{x} is the only exponential with slope 1 at $(0,1)$.

Derivatives of Exponential Functions

$$
\begin{gathered}
\frac{d}{d x}\left(e^{x}\right)=e^{x} \\
\frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x}
\end{gathered}
$$

At what point on the curve e^{x} is the tangent parallel to $y=2 x$?
Let $f(x)=e^{x}$

$$
f^{\prime}(a)=e^{a}=2
$$

Thus $a=\ln 2$, that is, the point is $\left(a, e^{a}\right)=(\ln 2,2)$.

Derivatives of Exponential Functions

Let $f(x)=e^{x}-x$. Find f^{\prime} and $f^{\prime \prime}$.

$$
f^{\prime}(x)=e^{x}-1 \quad f^{\prime \prime}(x)=e^{x}
$$

