Derivative as a Function

The derivative of f is a function f’ defined by

f'(x) = /lviLno %r)’*f(x)

» The domain of f’ is the set {x | f’(x) exists}.
» Geometrically, f’(x) is the slope of the tangent at (x, f(x)).

Let f(x) = x3 — x. Find a formula for f/(x).
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Exam Task from 2005

Using the definition of derivative, find f’(x), where f(x) = v/2x.

. flx+h) —f(x
m V2x

h—)O
. (m_m.mﬂ@)

h—0 h V2x +2h+V2x
:Iim< 2x +2h—2x >

h—0 (\/2)(4-72/74-\/5)

2
h—>0<\/m+\/§>
2 1

T 2v2x  vox



Derivative as a Function

Which of these functions is the derivative of the other?
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The right is the derivative of the left:
» look at local maxima and minima of f; then f" must be 0
» where f increases, f’ must be positive
» where f decreases, f’ must be negative



Derivative as a Function

A function f is differentiable at a if f'(a) exists.

A function f is differentiable on an open interval (g, b) if it is
differentiable at every number of the interval.

Note that the interval (g, b) may be (—oo, b), (&, c0) or (—oo, c0).



Derivative as a Function

Where is f(x) = |x| differentiable?

For x > 0 we have:
> x| = x,
» |x + h| = x + h for small enough h.
Thus for x > 0
f(x + h) — f(x) X+h—x
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For x < 0 we have:
> x| =—x,
» |x + h| = —x — h for small enough h.
Thus for x < 0
X—h+x
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Derivative as a Function

Where is f(x) = |x| differentiable?
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The left and right limits are different.
Thus f’(0) does not exist, and f(x) is not differentiable at 0.

Hence f is differentiable at all numbers in (—oo, 0) U (0, c0).



Derivatives and Continuity

If f is differentiable at a, then f is continuous at a.

The proof is in the book. Intuitively it holds because. . .
Differentiable at a means:

f'(a) = lim exists

h—0
Continuous at a means:
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If the latter limit would not be 0 (or not exist),
then M},—“a) would get arbitrarily large for small h.

If fis continuous at a, then f is not always differentiable at a.

E.g. |x| is continuous at 0 but not differentiable at 0.



How can a Function fail to be Derivable?

There are the following reasons for failure of being derivable:

Y,

» graph changes direction abruptly (graph has a “corner”)
» the function is not continuous at a
» graph has a vertical tangent at a, that is:

lim |/ (x)] = oo
X—a

Example for a vertical tangent is f(x) = /x at 0.



Derivative: Other Notations

We usually write f/(x) for the derivative.

However, there are other common notations:
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= " dx "~ dx f(x) = Df(x) = Dyxf(x)
The symbols d% and D are called differentiation operators.
(they indicate the operation of computing the derivative)

f(x) =

The notation % has been introduced by Leibnitz:
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In Leibnitz notation f’(a) is written as
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Higher Derivatives

If f is a function, the derivative f’ is also a function.

Thus we can compute the derivative of the derivative:
(f/)/ — f//

The function f” is called second derivative of f.

Let f(x) = x3 — x. Find f”(x).

We have seen f/(x) = 3x? — 1. Thus

f'(x +h) —f'(x)
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Higher Derivatives

What is the meaning of f”(x)?
» the slope of f/(x) at point (x, f'(x))
» the rate of change of f/(x)
» the rate of change of the rate of change of f(x)

The acceleration is an example of a second derivative:
» S(t) is the position of an object (at time t)
» v(t) = s’(t) is the speed (at time t)
» a(t) = v/(t) = s”(t) is the acceleration (at time t)



Higher Derivatives
We can continue this process of deriving:
> £7(x) = (F")'(x)
> f/l//(x) — (f///)/(X)
> ...

The n-th derivative of f is denoted by
d"y

(n)

7 (x) or X"
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For example, f=/f0,  f =f1)

Let f(x) = x® — x. Find f”/(x) and f*)(x).

We know f”(x) = 6x. Hence
f"(x) =6

Note that " is the slope of f”, and 4 is the slope of f”".

fY(x)=0



