Derivative as a Function

The derivative of f is a function f^{\prime} defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- The domain of f^{\prime} is the set $\left\{x \mid f^{\prime}(x)\right.$ exists $\}$.
- Geometrically, $f^{\prime}(x)$ is the slope of the tangent at $(x, f(x))$.

Let $f(x)=x^{3}-x$. Find a formula for $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-(x+h)\right]-\left[x^{3}-x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x-h-x^{3}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-h}{h}=\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}-1\right) \\
& =3 x^{2}-1
\end{aligned}
$$

Exam Task from 2005

Using the definition of derivative, find $f^{\prime}(x)$, where $f(x)=\sqrt{2 x}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{2 x+2 h}-\sqrt{2 x}}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{\sqrt{2 x+2 h}-\sqrt{2 x}}{h} \cdot \frac{\sqrt{2 x+2 h}+\sqrt{2 x}}{\sqrt{2 x+2 h}+\sqrt{2 x}}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{2 x+2 h-2 x}{h \cdot(\sqrt{2 x+2 h}+\sqrt{2 x})}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{2}{\sqrt{2 x+2 h}+\sqrt{2 x}}\right) \\
& =\frac{2}{2 \sqrt{2 x}}=\frac{1}{\sqrt{2 x}}
\end{aligned}
$$

Derivative as a Function

Which of these functions is the derivative of the other?

The right is the derivative of the left:

- look at local maxima and minima of f; then f^{\prime} must be 0
- where f increases, f^{\prime} must be positive
- where f decreases, f^{\prime} must be negative

Derivative as a Function

A function f is differentiable at a if $f^{\prime}(a)$ exists.

A function f is differentiable on an open interval (a, b) if it is differentiable at every number of the interval.

Note that the interval (a, b) may be $(-\infty, b),(a, \infty)$ or $(-\infty, \infty)$.

Derivative as a Function

Where is $f(x)=|x|$ differentiable?
For $x>0$ we have:

- $|x|=x$,
- $|x+h|=x+h$ for small enough h.

Thus for $x>0$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} 1=1
$$

For $x<0$ we have:

- $|x|=-x$,
- $|x+h|=-x-h$ for small enough h.

Thus for $x<0$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{-x-h+x}{h}=\lim _{h \rightarrow 0}-1=-1$

Derivative as a Function

Where is $f(x)=|x|$ differentiable?
For $x=0$

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}
$$

We need to look at the left and right limits:

$$
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h} \quad \text { since } h<0 \quad \lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}-1=-1
$$

and

$$
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h} \quad \text { since } h>0 \quad \lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1
$$

The left and right limits are different.
Thus $f^{\prime}(0)$ does not exist, and $f(x)$ is not differentiable at 0 . Hence f is differentiable at all numbers in $(-\infty, 0) \cup(0, \infty)$.

Derivatives and Continuity

If f is differentiable at a, then f is continuous at a.
The proof is in the book. Intuitively it holds because...
Differentiable at a means:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \text { exists }
$$

Continuous at a means:

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=f(a) & \Longleftrightarrow \lim _{x \rightarrow a}(f(x)-f(a))=0 \\
& \Longleftrightarrow \lim _{h \rightarrow 0}(f(a+h)-f(a))=0
\end{aligned}
$$

If the latter limit would not be 0 (or not exist), then $\frac{f(a+h)-f(a)}{h}$ would get arbitrarily large for small h.

If f is continuous at a, then f is not always differentiable at a.
E.g. $|x|$ is continuous at 0 but not differentiable at 0 .

How can a Function fail to be Derivable?

There are the following reasons for failure of being derivable:

- graph changes direction abruptly (graph has a "corner")
- the function is not continuous at a
- graph has a vertical tangent at a, that is:

$$
\lim _{x \rightarrow a}\left|f^{\prime}(x)\right|=\infty
$$

Example for a vertical tangent is $f(x)=\sqrt[3]{x}$ at 0 .

Derivative: Other Notations

We usually write $f^{\prime}(x)$ for the derivative.
However, there are other common notations:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The symbols $\frac{d}{d x}$ and D are called differentiation operators. (they indicate the operation of computing the derivative)

The notation $\frac{d y}{d x}$ has been introduced by Leibnitz:

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

In Leibnitz notation $f^{\prime}(a)$ is written as

$$
\left.\left.\frac{d y}{d x}\right|_{a} \quad \text { or } \quad \frac{d y}{d x}\right]_{a}
$$

Higher Derivatives

If f is a function, the derivative f^{\prime} is also a function.
Thus we can compute the derivative of the derivative:

$$
\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}
$$

The function $f^{\prime \prime}$ is called second derivative of f.
Let $f(x)=x^{3}-x$. Find $f^{\prime \prime}(x)$.
We have seen $f^{\prime}(x)=3 x^{2}-1$. Thus

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(f^{\prime}\right)^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{2}-1\right]-\left[3 x^{2}-1\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-1-3 x^{2}+1}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}}{h}=\lim _{h \rightarrow 0}(6 x+3 h)=6 x
\end{aligned}
$$

Higher Derivatives

What is the meaning of $f^{\prime \prime}(x)$?

- the slope of $f^{\prime}(x)$ at point $\left(x, f^{\prime}(x)\right)$
- the rate of change of $f^{\prime}(x)$
- the rate of change of the rate of change of $f(x)$

The acceleration is an example of a second derivative:

- $s(t)$ is the position of an object (at time t)
- $v(t)=s^{\prime}(t)$ is the speed (at time t)
- $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$ is the acceleration (at time t)

Higher Derivatives

We can continue this process of deriving:

- $f^{\prime \prime \prime}(x)=\left(f^{\prime \prime}\right)^{\prime}(x)$
- $f^{\prime \prime \prime \prime}(x)=\left(f^{\prime \prime \prime}\right)^{\prime}(x)$
- ...

The n-th derivative of f is denoted by

$$
f^{(n)}(x) \quad \text { or } \quad \frac{d^{n} y}{d x^{n}}
$$

For example, $\quad f=f^{(0)}, \quad f^{\prime}=f^{(1)}, \quad f^{\prime \prime}=f^{(2)}, \quad f^{\prime \prime \prime}=f^{(3)}$

Let $f(x)=x^{3}-x$. Find $f^{\prime \prime \prime}(x)$ and $f^{(4)}(x)$.
We know $f^{\prime \prime}(x)=6 x$. Hence

$$
f^{\prime \prime \prime}(x)=6 \quad f^{(4)}(x)=0
$$

Note that $f^{\prime \prime \prime}$ is the slope of $f^{\prime \prime}$, and $f^{(4)}$ is the slope of $f^{\prime \prime \prime}$.

