## Related (Dependent) Rates

Air is pumped into a spherical balloon:

- the volume increases with $100 \mathrm{~cm}^{3} / \mathrm{s}$

Find: rate of change of the radius when the diameter is 50 cm .
First step: introduce suggestive notation

- let $V(t)$ be the volume after time $t$
- let $r(t)$ be the radius after time $t$

Then the given problem translates to

$$
V^{\prime}(t)=100 \mathrm{~cm}^{3} / \mathrm{s} \quad \text { Find } r^{\prime}(t) \text { when } r=25 \mathrm{~cm}
$$

How are the volume of a sphere and its radius related?

$$
V=\frac{4}{3} \pi r^{3} \quad \text { thus } \quad V^{\prime}(t)=\frac{d}{d t}\left(\frac{4}{3} \pi r(t)^{3}\right)=\frac{4}{3} \pi \cdot 3 r(t)^{2} r^{\prime}(t)
$$

We solve for $r^{\prime}(t)$ :

$$
r^{\prime}(t)=\frac{V^{\prime}(t)}{4 \pi \cdot r(t)^{2}} \quad r^{\prime}(t)=\frac{100}{4 \pi \cdot 25^{2}}=\frac{1}{25 \pi} \mathrm{~cm} / \mathrm{s}
$$

## Related (Dependent) Rates

A ladder of length 10 ft rests against a vertical wall.

- the bottom of the ladder slides away from the wall with $1 \mathrm{ft} / \mathrm{s}$ How fast is the top sliding when the bottom is 6 ft from the wall?

$$
\begin{aligned}
& \text { Thus } \\
& x^{2}+y^{2}=10^{2} \\
& \stackrel{x=6}{\Longrightarrow} 6^{2}+y^{2}=10^{2} \\
& \Longrightarrow y= \pm \sqrt{10^{2}-6^{2}} \\
& \Longrightarrow y=8 \\
& \frac{d}{d t}\left(x^{2}+y^{2}\right)=\frac{d}{d t} 10^{2} \Longrightarrow 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \\
& \Longrightarrow \frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t} \Longrightarrow \frac{d y}{d t}=-\frac{6}{8} \cdot 1=-\frac{3}{4}
\end{aligned}
$$

The top slides with $\frac{3}{4} \mathrm{ft} / \mathrm{s}$ when the bottom is 6 ft from the wall.

## Related (Dependent) Rates

A water tank has the shape of an inverted circular cone:

- base radius $2 m$ and the height is $4 m$,
- water is pumped into the tank at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$.

At what rate is the water rising when the water is 3 m deep?


$$
V=\frac{1}{3} \pi r^{2} h
$$

How is $r$ related to $h$ ?

$$
\begin{aligned}
& \frac{r}{h}=\frac{2}{4} \quad \Longrightarrow \quad r=\frac{1}{2} h \\
& V=\frac{1}{3} \pi\left(\frac{1}{2} h\right)^{2} h=\frac{1}{12} \pi h^{3}
\end{aligned}
$$

We differentiate both sides with respect to $t$ :

$$
\frac{d V}{d t}=\frac{d}{d t}\left(\frac{1}{12} \pi h^{3}\right)=\frac{1}{12} \pi 3 h^{2} \frac{d h}{d t} \Longrightarrow \frac{d h}{d t}=\frac{4}{\pi h^{2}} \frac{d V}{d t} \stackrel{h=3}{=} \frac{4}{\pi 9} \cdot 2
$$

Thus the water rises with $8 /(\pi 9) \mathrm{m} / \mathrm{min}$ when its is 3 m deep.

## Related (Dependent) Rates

## Problem Solving Strategy

Important when solving textual problems:

- Read the problem carefully.
- Draw a diagram.
- Introduce notation, function names for the quantities.
- Express given information and goal using the notation.
- Write equations relating the quantities. Eliminate dependent variables (in the previous example we have eliminated the radius as it was dependent on the height).
- Use the chain rule to differentiate both sides w.r.t. $t$.
- Solve for the unknown rate, and substitute the given information into the resulting formula.


## Related (Dependent) Rates

Two cars are headed for the same road intersection:

- car $A$ is traveling west with $50 \mathrm{mi} / \mathrm{h}$
- car $B$ is traveling north with $60 \mathrm{mi} / \mathrm{h}$

At what rate are the cars approaching when $A$ is 0.3 mi and $B$ is 0.4 mi from the intersection?


- $x(t)=$ distance of $A$ to crossing
- $y(t)=$ distance of $B$ to crossing
- $z(t)=$ distance of $A$ to $B$

$$
\frac{d}{d t} x=-50 \quad \frac{d}{d t} y=-60
$$

$$
\begin{aligned}
& z^{2}=x^{2}+y^{2} \Longrightarrow 2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \\
& \frac{d z}{d t}=\frac{x}{z} \frac{d x}{d t}+\frac{y}{z} \frac{d y}{d t} \Longrightarrow \frac{d z}{d t}=\frac{0.3}{0.5}(-50)+\frac{0.4}{0.5}(-60)=-78
\end{aligned}
$$

When $x=0.3 \& y=0.4$, we get $z=0.5$. The answer is $78 \mathrm{mi} / \mathrm{h}$.

## Related (Dependent) Rates

We have a right-angled triangle of the form


The length $x$ increases with $4 \mathrm{~cm} / \mathrm{s}$.
How fast is the angle $\phi$ changing when $x=15 \mathrm{~cm}$ ?
The quantities $x$ and $\phi$ are related by:

$$
\tan \phi=\frac{x}{20}
$$

Differentiating both sides yields:

$$
\frac{d}{d t} \tan \phi=\frac{d}{d t} \frac{x}{20} \Longrightarrow \frac{1}{(\cos \phi)^{2}} \cdot \frac{d \phi}{d t}=\frac{1}{20} \cdot \frac{d x}{d t}
$$

## Related (Dependent) Rates

We have a right-angled triangle of the form


The length $x$ increases with $4 \mathrm{~cm} / \mathrm{s}$.
How fast is the angle $\phi$ changing when $x=15 \mathrm{~cm}$ ?

$$
\begin{aligned}
& \frac{1}{(\cos \phi)^{2}} \cdot \frac{d \phi}{d t}=\frac{1}{20} \cdot \frac{d x}{d t} \\
& \Longrightarrow \quad \frac{d \phi}{d t}=\frac{(\cos \phi)^{2}}{20} \cdot \frac{d x}{d t}=\frac{(\cos \phi)^{2}}{20} \cdot 4=\frac{(\cos \phi)^{2}}{5}
\end{aligned}
$$

We have $\cos \phi=20 / H=20 / \sqrt{15^{2}+20^{2}}=20 / 25=4 / 5$.
Thus

$$
\frac{d \phi}{d t}=\left(\frac{4}{5}\right)^{2} \cdot \frac{1}{5}=\frac{4^{2}}{5^{3}}=\frac{16}{125} \mathrm{rad} / \mathrm{s}
$$

