Exponential Growth and Decay

Often quantities grow or decay proportional to their size:

- growth of a population (animals, bacteria,...)
- decay of radioactive material
- growth of savings on your bank account (interest rates)

Assume that

- $y(t)$ be a quantity depending on time t
- rate of change of $y(t)$ is proportional to $y(t)$

Then

$$
y^{\prime}=k y \quad \text { or equivalently } \quad \frac{d}{d t} y=k y
$$

where k is a constant. This equation is called:

- law of natural growth if $k>0$
- law of natural decay if $k<0$

Exponential Growth and Decay

Assume that $y(t)$ be a function, and k a constant such that

$$
y^{\prime}=k y
$$

We have seen functions with this behavior:

$$
y(t)=C e^{k t} \quad y^{\prime}(t)=k\left(C e^{k t}\right)=k y(t)
$$

Note that

$$
y(0)=C e^{0}=C
$$

The only solutions of the differential equation

$$
y^{\prime}=k y
$$

are the exponential functions

$$
y(t)=C e^{k t}
$$

where C is any real number.

Exponential Population Growth

Let y be the size of a population.
Instead of saying 'the growth rate is proportional to the size'

$$
y^{\prime}=k y
$$

we can equivalently say that the relative growth rate

$$
\frac{y^{\prime}}{y}=k \quad \text { or equivalently } \quad \frac{1}{y} \frac{d y}{d t}=k
$$

is constant.
Then the solution is of the form

$$
y=C e^{k t}
$$

Exponential Population Growth

The world population was

- 2560 million in 1950 , and
- 3040 million in 1960.

Assume a constant growth rate. Find a formula $P(t)$ with

- $P(t)$ in millions of people and
- t in years since 1950.

We have

$$
\begin{aligned}
& P(t)=P(0) e^{k t} \\
& P(0)=2560 \\
& P(10)=2560 e^{10 k}=3040 \\
& e^{10 k}=\frac{3040}{2560} \Longrightarrow k=\frac{1}{10} \ln \frac{3040}{2560} \approx 0.017
\end{aligned}
$$

The world population growths with a rate of 1.7% per year.

Exponential Radioactive Decay

Let $m(t)$ be the mass of a radioactive substance after time t.
Then the relative decay rate rate

$$
-\frac{m^{\prime}}{m}=k \quad \text { or equivalently } \quad-\frac{1}{m} \frac{d m}{d t}=k
$$

is constant.
Then the solution is of the form

$$
m=C e^{-k t}
$$

Physicists typically express the decay in terms of half-life.
The half-life is the time until only half of the quantity is left.

Exponential Radioactive Decay

The half-life of radium-226 is 1590 years.

- We consider a sample of 100 mg .

Find a formula for the mass that remains after t years.
We have:

$$
\begin{aligned}
& m(t)=m(0) \cdot e^{-k t} \\
& m(0)=100 \\
& m(1590)=\frac{1}{2} \cdot 100=50=100 \cdot e^{-k \cdot 1590} \\
& e^{-k \cdot 1590}=\frac{1}{2} \Longrightarrow-k \cdot 1590=\ln \frac{1}{2}=\ln 1-\ln 2=-\ln 2 \\
& k=\frac{\ln 2}{1590}
\end{aligned}
$$

Hence $m(t)=100 e^{-\frac{\ln 2}{1590} t}=100\left(\frac{1}{2}\right)^{\frac{t}{1590}}$ is the mass after t years.

Newtons Law of Cooling/Warming

Newtons Law of Cooling

The rate of cooling of an object is proportional to the temperature difference of the object and surrounding temperature.

Let

- $T(t)$ be the temperature after time t, and
- T_{s} the temperature of the surroundings.

Then the law can be written as differential equation:

$$
T^{\prime}(t)=k\left(T(t)-T_{s}\right)
$$

where k is constant.
This is not yet the form that we need. Let

$$
y(t)=T(t)-T_{s} \text { then } y^{\prime}(t)=T^{\prime}(t) \text { thus } y^{\prime}(t)=k y(t)
$$

Thus the solution for y is an exponential function $C e^{k t}$.

Newtons Law of Cooling/Warming

$$
T^{\prime}(t)=k\left(T(t)-T_{s}\right)
$$

A bottle of water is placed in the refrigerator:

- bottle has temperature $60^{\circ} \mathrm{F}$,
- refrigerator has temperature $20^{\circ} \mathrm{F}$

After 2 minutes the bottle has cooled down to $30^{\circ} \mathrm{F}$.

- Find a formula for the temperature.

$$
T^{\prime}(t)=k\left(T(t)-T_{s}\right)=k(T(t)-20)
$$

We let $y(t)=T(t)-20$, then

$$
\begin{aligned}
& y(0)=T(0)-20=60-20=40 \\
& y(t)=y(0) e^{k t}=40 e^{k t} \\
& y(2)=40 e^{k 2}=T(2)-20=10 \Longrightarrow k=\frac{\ln \frac{10}{40}}{2}=\ln \frac{1}{2}
\end{aligned}
$$

Thus $T(t)=y(t)+20=40 e^{t \cdot \ln \frac{1}{2}}+20$

Continuously Compounded Interest

Assume 1000\$ are invested with 6% interest compounded annually. Then

- after 1 year we have $1000 \$ \cdot 1.06=1060 \$$
- after 2 year we have $1000 \$ \cdot 1.06^{2}=1123.6 \$$
- after t year we have $1000 \$ \cdot 1.06^{t}$

If A_{0} is invested with interest rate r, compounded annually, then after t years the amount is

$$
A_{0} \cdot(1+r)^{t}
$$

Usually, interest is compounded more frequently.
If the interest is compounded n times per year, then after t years the value is

$$
A_{0} \cdot\left(1+\frac{r}{n}\right)^{n t}
$$

Continuously Compounded Interest

If the interest is compounded n times per year, then after t years the value is

$$
A_{0} \cdot\left(1+\frac{r}{n}\right)^{n t}
$$

For instance, $1000 \$$ with 6% interest after 3 years:

- 1000\$ $\cdot(1+0.06)^{3}=1191.02 \$$ annual compounding
- 1000\$ $\cdot(1+0.03)^{6}=1194.05 \$$ semiannual compounding
- $1000 \$ \cdot(1+0.015)^{12}=1195.62 \$$ quarterly compounding
- 1000\$ $\cdot(1+0.005)^{36}=1196.68 \$$ monthly compounding
- $1000 \$ \cdot(1+0.06 / 356)^{356 \cdot 3}=1197.20 \$$ daily compounding

If we let $n \rightarrow \infty$, we get continuous compounding:
$A(t)=\lim _{n \rightarrow \infty} A_{0} \cdot\left(1+\frac{r}{n}\right)^{n t}=A_{0} \cdot\left(\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{\frac{n}{r}}\right)^{r t}=A_{0} \cdot e^{r t}$

- $1000 \$ \cdot e^{0.06 \cdot 3}=1197.22 \$$ continuous compounding

